Federated Learning for Detecting Anomaly in IoT Networks

Federated Learning (FL) presents a novel method for collaborative model training while safeguarding data privacy, which is a primary concern in the Internet of Things (IoT) world. This research uses FL to enhance security within IoT networks, employing the CICIoT2023 dataset. The dataset was subject...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Signal Processing and Communication (Online) pp. 409 - 414
Main Authors Tomar, Vikas, Jain, Vikas Kumar, Yadav, Anil Kumar, Shukla, Shiv Shankar Prasad
Format Conference Proceeding
LanguageEnglish
Published IEEE 20.02.2025
Subjects
Online AccessGet full text
ISSN2643-444X
DOI10.1109/ICSC64553.2025.10967664

Cover

Abstract Federated Learning (FL) presents a novel method for collaborative model training while safeguarding data privacy, which is a primary concern in the Internet of Things (IoT) world. This research uses FL to enhance security within IoT networks, employing the CICIoT2023 dataset. The dataset was subjected to important preprocessing, including the management of missing data and the removal of redundancies, with feature selection conducted using a Random Forest classifier to determine essential attributes. These features were incorporated into a simulated FL framework, where locally trained models from decentralized datasets contributed to a collectively aggregated model. Our findings reveal the capacity of FL to improve model accuracy without sacrificing data privacy, offering scalable and practical security solutions for IoT systems.
AbstractList Federated Learning (FL) presents a novel method for collaborative model training while safeguarding data privacy, which is a primary concern in the Internet of Things (IoT) world. This research uses FL to enhance security within IoT networks, employing the CICIoT2023 dataset. The dataset was subjected to important preprocessing, including the management of missing data and the removal of redundancies, with feature selection conducted using a Random Forest classifier to determine essential attributes. These features were incorporated into a simulated FL framework, where locally trained models from decentralized datasets contributed to a collectively aggregated model. Our findings reveal the capacity of FL to improve model accuracy without sacrificing data privacy, offering scalable and practical security solutions for IoT systems.
Author Shukla, Shiv Shankar Prasad
Yadav, Anil Kumar
Tomar, Vikas
Jain, Vikas Kumar
Author_xml – sequence: 1
  givenname: Vikas
  surname: Tomar
  fullname: Tomar, Vikas
  email: vikas.tomar2021@vitbhopal.ac.in
  organization: School of Computing Science Engineering and Artificial Intelligence, VIT Bhopal University,Bhopal,Madhya Pradesh,India,466114
– sequence: 2
  givenname: Vikas Kumar
  surname: Jain
  fullname: Jain, Vikas Kumar
  email: vikaskumar@vitbhopal.ac.in
  organization: School of Computing Science Engineering and Artificial Intelligence, VIT Bhopal University,Bhopal,Madhya Pradesh,India,466114
– sequence: 3
  givenname: Anil Kumar
  surname: Yadav
  fullname: Yadav, Anil Kumar
  email: aky125@gmail.com
  organization: School of Computing Science Engineering and Artificial Intelligence, VIT Bhopal University,Bhopal,Madhya Pradesh,India,466114
– sequence: 4
  givenname: Shiv Shankar Prasad
  surname: Shukla
  fullname: Shukla, Shiv Shankar Prasad
  email: shivshankar.prasad@vitbhopal.ac.in
  organization: School of Computing Science Engineering and Artificial Intelligence, VIT Bhopal University,Bhopal,Madhya Pradesh,India,466114
BookMark eNo1j8tKxDAYhaMoOI59A8G8QMc_93Q5VEcLRRd24W6IyR-pzqSSFmTe3g7q6lwWh-9ckrM0JCTkhsGKMahum_ql1lIpseLA1WqutNFanpCiMpUVginGbAWnZMG1FKWU8vWCFOP4AQCCgzCKLYjdYMDsJgy0RZdTn95pHDK9wwn9dEzrNOzd7kD7RJuho084fQ_5c7wi59HtRiz-dEm6zX1XP5bt80NTr9uyr8RUymhl9MGBYdqoELTlGBXMYFzOkFpYF72S4W12FjR6MFwb75mZlTkmluT6d7ZHxO1X7vcuH7b_X8UPjx9Iyg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSC64553.2025.10967664
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331511890
EISSN 2643-444X
EndPage 414
ExternalDocumentID 10967664
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-4f84fcda071675dd682ef5011824798638afc54db638806ec07267cc177261a13
IEDL.DBID RIE
IngestDate Wed Apr 30 05:50:38 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-4f84fcda071675dd682ef5011824798638afc54db638806ec07267cc177261a13
PageCount 6
ParticipantIDs ieee_primary_10967664
PublicationCentury 2000
PublicationDate 2025-Feb.-20
PublicationDateYYYYMMDD 2025-02-20
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb.-20
  day: 20
PublicationDecade 2020
PublicationTitle International Conference on Signal Processing and Communication (Online)
PublicationTitleAbbrev ICSC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203751
Score 1.9015115
Snippet Federated Learning (FL) presents a novel method for collaborative model training while safeguarding data privacy, which is a primary concern in the Internet of...
SourceID ieee
SourceType Publisher
StartPage 409
SubjectTerms Cybersecurity
Data models
Data preprocessing
Data privacy
Feature extraction
Feature Selection
Federated learning
Internet of Things
Random Forest
Random forests
Redundancy
Signal processing
Training
Title Federated Learning for Detecting Anomaly in IoT Networks
URI https://ieeexplore.ieee.org/document/10967664
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVoJ1j4KuJbHlgdGsd2khEVqsJQIVGkbpVjn1EFJAjSAX49ZyctHxISWxI5kuOLcy_2e-8IOVMuzlzKCwZ9bpngIFmWO8MAoXUqnRa2CATZsRrdi5upnLZi9aCFAYBAPoPIH4a9fFuZhV8qwxmeq1Qp0SEdfM8asdZqQSXhvpxr3HK4sOn59eBuoISUCf4Gchkt7_5RRyWkkeEmGS870LBHHqNFXUTm45c34797uEV6X4o9ervKRdtkDcodsvHNbHCXZEPvG4HQ0tLWVPWBImKll-D3EfzZRVk966d3Oi_pdTWh44Yh_tYjk-HVZDBibd0ENs-TmgmXCWesRvCAw22tyjg46RWmXKR5hhNOOyMxCMobwSgw_ZSr1JgYgbaKdZzskW5ZlbBPqP8gOAFO5Ir7UpMIbm1R5IVMpAOp9QHp-TGYvTTOGLPl4x_-cf2IrPtQBEl4_5h069cFnGBSr4vTEMxPyIOfSw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT4MwFL3R-aC--DXjt33wFRylLfBopsumk5iIyd4WaG_NMgWj7EF_vS2w-ZGY-AYEkrY35Z6255wLcCa0F-qAZg52qHIYRe6EkZYOGmgdcJ0ylVUE2Vj0H9j1iI8asXqlhUHEinyGrr2szvJVIWd2q8zM8EgEQrBlWDGJn_FarrXYUvGpLejqNSwu8_L5oHvfFYxz3ywEKXfn3_-opFIlkt4GxPMm1PyRqTsrM1d-_HJn_HcbN6H9pdkjd4tstAVLmG_D-je7wR0Ie9Y5woBLRRpb1UdiMCu5RHuSYO8u8uI5fXonk5wMioTENUf8rQ1J7yrp9p2mcoIzifzSYTpkWqrUwAcz4EqJkKLmVmNKWRCFZsqlWnITBmGtYATKTkBFIKVnoLbwUs_fhVZe5LgHxP4SNEPNIkFtsUkDb1WWRRn3uUaepvvQtmMwfqm9Mcbz7h_88fwUVvvJ7XA8HMQ3h7Bmw1IJxDtH0CpfZ3hsUnyZnVSB_QRViqKY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Signal+Processing+and+Communication+%28Online%29&rft.atitle=Federated+Learning+for+Detecting+Anomaly+in+IoT+Networks&rft.au=Tomar%2C+Vikas&rft.au=Jain%2C+Vikas+Kumar&rft.au=Yadav%2C+Anil+Kumar&rft.au=Shukla%2C+Shiv+Shankar+Prasad&rft.date=2025-02-20&rft.pub=IEEE&rft.eissn=2643-444X&rft.spage=409&rft.epage=414&rft_id=info:doi/10.1109%2FICSC64553.2025.10967664&rft.externalDocID=10967664