Federated Learning for Detecting Anomaly in IoT Networks
Federated Learning (FL) presents a novel method for collaborative model training while safeguarding data privacy, which is a primary concern in the Internet of Things (IoT) world. This research uses FL to enhance security within IoT networks, employing the CICIoT2023 dataset. The dataset was subject...
Saved in:
Published in | International Conference on Signal Processing and Communication (Online) pp. 409 - 414 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
20.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2643-444X |
DOI | 10.1109/ICSC64553.2025.10967664 |
Cover
Abstract | Federated Learning (FL) presents a novel method for collaborative model training while safeguarding data privacy, which is a primary concern in the Internet of Things (IoT) world. This research uses FL to enhance security within IoT networks, employing the CICIoT2023 dataset. The dataset was subjected to important preprocessing, including the management of missing data and the removal of redundancies, with feature selection conducted using a Random Forest classifier to determine essential attributes. These features were incorporated into a simulated FL framework, where locally trained models from decentralized datasets contributed to a collectively aggregated model. Our findings reveal the capacity of FL to improve model accuracy without sacrificing data privacy, offering scalable and practical security solutions for IoT systems. |
---|---|
AbstractList | Federated Learning (FL) presents a novel method for collaborative model training while safeguarding data privacy, which is a primary concern in the Internet of Things (IoT) world. This research uses FL to enhance security within IoT networks, employing the CICIoT2023 dataset. The dataset was subjected to important preprocessing, including the management of missing data and the removal of redundancies, with feature selection conducted using a Random Forest classifier to determine essential attributes. These features were incorporated into a simulated FL framework, where locally trained models from decentralized datasets contributed to a collectively aggregated model. Our findings reveal the capacity of FL to improve model accuracy without sacrificing data privacy, offering scalable and practical security solutions for IoT systems. |
Author | Shukla, Shiv Shankar Prasad Yadav, Anil Kumar Tomar, Vikas Jain, Vikas Kumar |
Author_xml | – sequence: 1 givenname: Vikas surname: Tomar fullname: Tomar, Vikas email: vikas.tomar2021@vitbhopal.ac.in organization: School of Computing Science Engineering and Artificial Intelligence, VIT Bhopal University,Bhopal,Madhya Pradesh,India,466114 – sequence: 2 givenname: Vikas Kumar surname: Jain fullname: Jain, Vikas Kumar email: vikaskumar@vitbhopal.ac.in organization: School of Computing Science Engineering and Artificial Intelligence, VIT Bhopal University,Bhopal,Madhya Pradesh,India,466114 – sequence: 3 givenname: Anil Kumar surname: Yadav fullname: Yadav, Anil Kumar email: aky125@gmail.com organization: School of Computing Science Engineering and Artificial Intelligence, VIT Bhopal University,Bhopal,Madhya Pradesh,India,466114 – sequence: 4 givenname: Shiv Shankar Prasad surname: Shukla fullname: Shukla, Shiv Shankar Prasad email: shivshankar.prasad@vitbhopal.ac.in organization: School of Computing Science Engineering and Artificial Intelligence, VIT Bhopal University,Bhopal,Madhya Pradesh,India,466114 |
BookMark | eNo1j8tKxDAYhaMoOI59A8G8QMc_93Q5VEcLRRd24W6IyR-pzqSSFmTe3g7q6lwWh-9ckrM0JCTkhsGKMahum_ql1lIpseLA1WqutNFanpCiMpUVginGbAWnZMG1FKWU8vWCFOP4AQCCgzCKLYjdYMDsJgy0RZdTn95pHDK9wwn9dEzrNOzd7kD7RJuho084fQ_5c7wi59HtRiz-dEm6zX1XP5bt80NTr9uyr8RUymhl9MGBYdqoELTlGBXMYFzOkFpYF72S4W12FjR6MFwb75mZlTkmluT6d7ZHxO1X7vcuH7b_X8UPjx9Iyg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICSC64553.2025.10967664 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798331511890 |
EISSN | 2643-444X |
EndPage | 414 |
ExternalDocumentID | 10967664 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-4f84fcda071675dd682ef5011824798638afc54db638806ec07267cc177261a13 |
IEDL.DBID | RIE |
IngestDate | Wed Apr 30 05:50:38 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-4f84fcda071675dd682ef5011824798638afc54db638806ec07267cc177261a13 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10967664 |
PublicationCentury | 2000 |
PublicationDate | 2025-Feb.-20 |
PublicationDateYYYYMMDD | 2025-02-20 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-Feb.-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Signal Processing and Communication (Online) |
PublicationTitleAbbrev | ICSC |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003203751 |
Score | 1.9015115 |
Snippet | Federated Learning (FL) presents a novel method for collaborative model training while safeguarding data privacy, which is a primary concern in the Internet of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 409 |
SubjectTerms | Cybersecurity Data models Data preprocessing Data privacy Feature extraction Feature Selection Federated learning Internet of Things Random Forest Random forests Redundancy Signal processing Training |
Title | Federated Learning for Detecting Anomaly in IoT Networks |
URI | https://ieeexplore.ieee.org/document/10967664 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVoJ1j4KuJbHlgdGsd2khEVqsJQIVGkbpVjn1EFJAjSAX49ZyctHxISWxI5kuOLcy_2e-8IOVMuzlzKCwZ9bpngIFmWO8MAoXUqnRa2CATZsRrdi5upnLZi9aCFAYBAPoPIH4a9fFuZhV8qwxmeq1Qp0SEdfM8asdZqQSXhvpxr3HK4sOn59eBuoISUCf4Gchkt7_5RRyWkkeEmGS870LBHHqNFXUTm45c34797uEV6X4o9ervKRdtkDcodsvHNbHCXZEPvG4HQ0tLWVPWBImKll-D3EfzZRVk966d3Oi_pdTWh44Yh_tYjk-HVZDBibd0ENs-TmgmXCWesRvCAw22tyjg46RWmXKR5hhNOOyMxCMobwSgw_ZSr1JgYgbaKdZzskW5ZlbBPqP8gOAFO5Ir7UpMIbm1R5IVMpAOp9QHp-TGYvTTOGLPl4x_-cf2IrPtQBEl4_5h069cFnGBSr4vTEMxPyIOfSw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT4MwFL3R-aC--DXjt33wFRylLfBopsumk5iIyd4WaG_NMgWj7EF_vS2w-ZGY-AYEkrY35Z6255wLcCa0F-qAZg52qHIYRe6EkZYOGmgdcJ0ylVUE2Vj0H9j1iI8asXqlhUHEinyGrr2szvJVIWd2q8zM8EgEQrBlWDGJn_FarrXYUvGpLejqNSwu8_L5oHvfFYxz3ywEKXfn3_-opFIlkt4GxPMm1PyRqTsrM1d-_HJn_HcbN6H9pdkjd4tstAVLmG_D-je7wR0Ie9Y5woBLRRpb1UdiMCu5RHuSYO8u8uI5fXonk5wMioTENUf8rQ1J7yrp9p2mcoIzifzSYTpkWqrUwAcz4EqJkKLmVmNKWRCFZsqlWnITBmGtYATKTkBFIKVnoLbwUs_fhVZe5LgHxP4SNEPNIkFtsUkDb1WWRRn3uUaepvvQtmMwfqm9Mcbz7h_88fwUVvvJ7XA8HMQ3h7Bmw1IJxDtH0CpfZ3hsUnyZnVSB_QRViqKY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Signal+Processing+and+Communication+%28Online%29&rft.atitle=Federated+Learning+for+Detecting+Anomaly+in+IoT+Networks&rft.au=Tomar%2C+Vikas&rft.au=Jain%2C+Vikas+Kumar&rft.au=Yadav%2C+Anil+Kumar&rft.au=Shukla%2C+Shiv+Shankar+Prasad&rft.date=2025-02-20&rft.pub=IEEE&rft.eissn=2643-444X&rft.spage=409&rft.epage=414&rft_id=info:doi/10.1109%2FICSC64553.2025.10967664&rft.externalDocID=10967664 |