POEM: Interactive Prompt Optimization for Enhancing Multimodal Reasoning of Large Language Models
Large language models (LLMs) have exhibited impressive abilities for multimodal content comprehension and reasoning with proper prompting in zero- or few-shot settings. Despite the proliferation of interactive systems developed to support prompt engineering for LLMs across various tasks, most have p...
Saved in:
Published in | IEEE Pacific Visualization Symposium pp. 36 - 46 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
22.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2165-8773 |
DOI | 10.1109/PacificVis64226.2025.00010 |
Cover
Abstract | Large language models (LLMs) have exhibited impressive abilities for multimodal content comprehension and reasoning with proper prompting in zero- or few-shot settings. Despite the proliferation of interactive systems developed to support prompt engineering for LLMs across various tasks, most have primarily focused on textual or visual inputs, thus neglecting the complex interplay between modalities in multimodal inputs. This oversight hinders the development of effective prompts that guide models' multimodal reasoning processes by fully exploiting the rich context provided by multiple modalities. In this paper, we present POEM, a visual analytics system to facilitate efficient prompt engineering for steering the multimodal reasoning performance of LLMs. The system enables users to explore the interaction patterns across modalities at varying levels of detail for a comprehensive understanding of the multimodal knowledge elicited by various prompts. Through diverse recommendations of demonstration examples and instructional principles, POEM supports users in iteratively crafting and refining prompts to better align and enhance model knowledge with human insights. The effectiveness and efficiency of our system are validated through quantitative and qualitative evaluations with experts. |
---|---|
AbstractList | Large language models (LLMs) have exhibited impressive abilities for multimodal content comprehension and reasoning with proper prompting in zero- or few-shot settings. Despite the proliferation of interactive systems developed to support prompt engineering for LLMs across various tasks, most have primarily focused on textual or visual inputs, thus neglecting the complex interplay between modalities in multimodal inputs. This oversight hinders the development of effective prompts that guide models' multimodal reasoning processes by fully exploiting the rich context provided by multiple modalities. In this paper, we present POEM, a visual analytics system to facilitate efficient prompt engineering for steering the multimodal reasoning performance of LLMs. The system enables users to explore the interaction patterns across modalities at varying levels of detail for a comprehensive understanding of the multimodal knowledge elicited by various prompts. Through diverse recommendations of demonstration examples and instructional principles, POEM supports users in iteratively crafting and refining prompts to better align and enhance model knowledge with human insights. The effectiveness and efficiency of our system are validated through quantitative and qualitative evaluations with experts. |
Author | Wang, Xingbo Liu, Shiyi Silva, Claudio Wu, Guande Qu, Huamin He, Jianben |
Author_xml | – sequence: 1 givenname: Jianben surname: He fullname: He, Jianben email: jhebt@ust.hk organization: Hong Kong University of Science and Technology – sequence: 2 givenname: Xingbo surname: Wang fullname: Wang, Xingbo email: Xingbo.wang@us.bosch.com organization: Bosch Center for Artificial Intelligence (BCAI), Bosch Research North America – sequence: 3 givenname: Shiyi surname: Liu fullname: Liu, Shiyi email: shiyiliu@asu.edu organization: Arizona State University – sequence: 4 givenname: Guande surname: Wu fullname: Wu, Guande email: guandewu@nyu.edu organization: New York University – sequence: 5 givenname: Claudio surname: Silva fullname: Silva, Claudio email: csilva@nyu.edu organization: New York University – sequence: 6 givenname: Huamin surname: Qu fullname: Qu, Huamin email: huamin@ust.hk organization: Hong Kong University of Science and Technology |
BookMark | eNotUE1LAzEQjaJgrf0HHoL3rZNkk816k1K1sKVFitcypJMa2SZldyvorzeil5l5Hwy8d80uYorE2J2AqRBQ36_RBR_cW-hNKaWZSpB6CgACztikrmqrlNCgrVDnbCSF0YWtKnXFJn3_kW1Ql0JbM2K4Xs2XD3wRB-rQDeGT-LpLh-PAV8chHMI3DiFF7lPH5_Edowtxz5enNmtphy1_JexT_CWT5w12e8oz7k-Yj2XaUdvfsEuPbU-T_z1mm6f5ZvZSNKvnxeyxKUKthqK0FirrnCFQoEuytXGVgRwjR0HntQUELUAr7YQsKVPOmx0Il7H1Xo3Z7d_bQETbYxcO2H1tc1dSQKnUDx0QWkc |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/PacificVis64226.2025.00010 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798331505813 |
EISSN | 2165-8773 |
EndPage | 46 |
ExternalDocumentID | 11021043 |
Genre | orig-research |
GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-488078cc6e03054e896c760833983acf580a0510535c124eacfcf6d01c5c18ff3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:43:03 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-488078cc6e03054e896c760833983acf580a0510535c124eacfcf6d01c5c18ff3 |
PageCount | 11 |
ParticipantIDs | ieee_primary_11021043 |
PublicationCentury | 2000 |
PublicationDate | 2025-April-22 |
PublicationDateYYYYMMDD | 2025-04-22 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | IEEE Pacific Visualization Symposium |
PublicationTitleAbbrev | PACIFICVIS |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000941586 |
Score | 2.288908 |
Snippet | Large language models (LLMs) have exhibited impressive abilities for multimodal content comprehension and reasoning with proper prompting in zero- or few-shot... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 36 |
SubjectTerms | Cognition Context modeling Interactive systems Large language models multimodal large language models multimodal reasoning Optimization Prompt engineering Refining Usability Visual analytics |
Title | POEM: Interactive Prompt Optimization for Enhancing Multimodal Reasoning of Large Language Models |
URI | https://ieeexplore.ieee.org/document/11021043 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB3RnuDCVsQuH7imzeo6XFGrCtFFqKDeKse1oaJJKppe-HpmnLRUSEhcosRSIsvOeJ6f580A3Kkw8RVPlEOqS6JufCfhJnBE4gsj0aFLW3muP-C9l_BxEk0qsbrVwmitbfCZbtKtPcuf5WpNVFnLozrUbhjUoIb_WSnW2hIquE_xIsGrxKKeG7eqsLbX-YqTXhQ3gz4RKC6pZXdKqVhP0j2EwaYPZQDJR3NdJE319Ss94787eQSNH9EeG23d0THs6ewEDnbyDZ6CHA07_XtmWUBpFzp6I10WbIgrR1pJMhniWNbJ3ikTR_bGrEQ3zWdywZ61XFn6luWGPVEMOV5LvpNRUbXFqgHjbmf80HOqGgvOPA4Kh8y3LZTimgw_1CLmqs0RlgWxCKQykXAlmW0URAqRAK7SRhk-cz2Fz8KY4AzqWZ7pc2CILBDrKGHwW7gpRTfHlStjdH6xQYzpXUCDBmu6LLNoTDfjdPlH-xXs04TRyY3vX0O9-FzrGwQARXJrJ_4b4V2vBA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4oHtSLL4xv9-C12Oey9WogqLxi0HAj22VXidASKRd_vTNLQWJi4qVpm7TZbDsz33473wzAjQoTX_FEOaS6JOrGdxJuAkckvjASA7q0nedabd54CR_7Ub8Qq1stjNbaJp_pCp3avfxhpuZEld161IfaDYNN2MLAH0YLudaKUsGVihcJXpQW9dz4tkhsex3NOClGcTnoE4Xikl52rZmKjSX1PWgvR7FIIfmozPOkor5-FWj89zD3ofwj22PdVUA6gA2dHsLuWsXBI5DdTq11xywPKK2roycm05x10HdMClEmQyTLauk71eJI35gV6U6yoRyzZy1nlsBlmWFNyiLH44LxZNRWbTwrQ69e6903nKLLgjOKg9whA64Kpbgm0w-1iLmqcgRmQSwCqUwkXEmGGwWRQiyAftoow4eup_BaGBMcQynNUn0CDLEFoh0lDL4Ll6UY6LhyZYzhLzaIMr1TKNNkDaaLOhqD5Tyd_XH_GrYbvVZz0HxoP53DDn082sfx_Qso5Z9zfYlwIE-u7E_wDTrDslE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Pacific+Visualization+Symposium&rft.atitle=POEM%3A+Interactive+Prompt+Optimization+for+Enhancing+Multimodal+Reasoning+of+Large+Language+Models&rft.au=He%2C+Jianben&rft.au=Wang%2C+Xingbo&rft.au=Liu%2C+Shiyi&rft.au=Wu%2C+Guande&rft.date=2025-04-22&rft.pub=IEEE&rft.eissn=2165-8773&rft.spage=36&rft.epage=46&rft_id=info:doi/10.1109%2FPacificVis64226.2025.00010&rft.externalDocID=11021043 |