BP-GPT: Auditory Neural Decoding Using fMRI-prompted LLM

Decoding language information from brain signals represents a vital research area within brain-computer interfaces, particularly in the context of deciphering the semantic information from the fMRI signal. Although existing work uses LLM to achieve this goal, their method does not use an end-to-end...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 1 - 5
Main Authors Chen, Xiaoyu, Du, Changde, Liu, Che, Wang, Yizhe, He, Huiguang
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Decoding language information from brain signals represents a vital research area within brain-computer interfaces, particularly in the context of deciphering the semantic information from the fMRI signal. Although existing work uses LLM to achieve this goal, their method does not use an end-to-end approach and avoids the LLM in the mapping of fMRI-to-text, leaving space for the exploration of the LLM in auditory decoding. In this paper, we introduce a novel method, the Brain Prompt GPT (BP-GPT). By using the brain representation that is extracted from the fMRI as a prompt, our method can utilize GPT-2 to decode fMRI signals into stimulus text. Further, we introduce the text prompt and align the fMRI prompt to it. By introducing the text prompt, our BP-GPT can extract a more robust brain prompt and promote the decoding of pre-trained LLM. We evaluate our BP-GPT on the open-source auditory semantic decoding dataset and achieve a significant improvement up to 4.61% on METEOR and 2.43% on BERTScore across all the subjects compared to the state-of-the-art method. The experimental results demonstrate that using brain representation as a prompt to further drive LLM for auditory neural decoding is feasible and effective. The code is available at https://github.com/1994cxy/BP-GPT.
AbstractList Decoding language information from brain signals represents a vital research area within brain-computer interfaces, particularly in the context of deciphering the semantic information from the fMRI signal. Although existing work uses LLM to achieve this goal, their method does not use an end-to-end approach and avoids the LLM in the mapping of fMRI-to-text, leaving space for the exploration of the LLM in auditory decoding. In this paper, we introduce a novel method, the Brain Prompt GPT (BP-GPT). By using the brain representation that is extracted from the fMRI as a prompt, our method can utilize GPT-2 to decode fMRI signals into stimulus text. Further, we introduce the text prompt and align the fMRI prompt to it. By introducing the text prompt, our BP-GPT can extract a more robust brain prompt and promote the decoding of pre-trained LLM. We evaluate our BP-GPT on the open-source auditory semantic decoding dataset and achieve a significant improvement up to 4.61% on METEOR and 2.43% on BERTScore across all the subjects compared to the state-of-the-art method. The experimental results demonstrate that using brain representation as a prompt to further drive LLM for auditory neural decoding is feasible and effective. The code is available at https://github.com/1994cxy/BP-GPT.
Author Wang, Yizhe
He, Huiguang
Du, Changde
Chen, Xiaoyu
Liu, Che
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Chen
  fullname: Chen, Xiaoyu
  organization: CASIA,NeuBCI Group, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology
– sequence: 2
  givenname: Changde
  surname: Du
  fullname: Du, Changde
  organization: CASIA,NeuBCI Group, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology
– sequence: 3
  givenname: Che
  surname: Liu
  fullname: Liu, Che
  organization: CASIA,NeuBCI Group, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology
– sequence: 4
  givenname: Yizhe
  surname: Wang
  fullname: Wang, Yizhe
  organization: CASIA,State Key Laboratory of Multimodal Artificial Intelligence Systems
– sequence: 5
  givenname: Huiguang
  surname: He
  fullname: He, Huiguang
  organization: CASIA,NeuBCI Group, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology
BookMark eNo1j0FLw0AUhFdRsK39Bx7iD9j49u1udtdbbbUWUg02greyaV4k0iYhSQ_990bUy8zAB8PMmF1UdUWM3QoIhQB3t5rPNptEuSiCEAF1KMA6EArP2NQZZ6UGGVmjxDkboTSOCwcfV2zcdV8AMAA7YvYh4cskvQ9mx7zs6_YUvNCx9ftgQbs6L6vP4L370WL9tuJNWx-anvIgjtfX7LLw-46mfz5h6dNjOn_m8etyGBbz0smeK0A04AEhVztEoTw4BJFpL4TSGTqtCiMxKqwkmUlCIALKh2AibbWQE3bzW1sS0bZpy4NvT9v_o_IbiaBG-A
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP49660.2025.10890142
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350368741
EISSN 2379-190X
EndPage 5
ExternalDocumentID 10890142
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i93t-402270a020d4c2214a09201b5a1145b2954f7326f83e3b3e20ee0ed3e27658513
IEDL.DBID RIE
IngestDate Wed Jul 30 06:10:25 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-402270a020d4c2214a09201b5a1145b2954f7326f83e3b3e20ee0ed3e27658513
PageCount 5
ParticipantIDs ieee_primary_10890142
PublicationCentury 2000
PublicationDate 2025-April-6
PublicationDateYYYYMMDD 2025-04-06
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-6
  day: 06
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.2881336
Snippet Decoding language information from brain signals represents a vital research area within brain-computer interfaces, particularly in the context of deciphering...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms brain-computer interface
Brain-computer interfaces
Codes
Decoding
fMRI
Functional magnetic resonance imaging
large language model
Large language models
Meteors
Neural decoding
Semantics
Signal processing
Space exploration
Speech processing
Title BP-GPT: Auditory Neural Decoding Using fMRI-prompted LLM
URI https://ieeexplore.ieee.org/document/10890142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66B9EXbxPvRPA1tUvTpvVtTucm2yhuwt5Gkp6AqNsY7YP-ek-6ixcQfAuF0LQhOd-Xc74vhFxKqTkCCc6iyEomQCUssYFhPLChMgYxcObOO7q9qPUkHobhcCFWL7UwAFAWn4HnmmUuP5uYwh2V4QqPXdYPd9x1ZG5zsdZq242liDfIxcJE86rdqPf7qXDmk8gCeegtO_-4RqWMIs1t0lu-f1488uIVufbMxy9rxn8PcIdUvwR7NF2Fol2yBuM9svXNa3CfxDcpu08H17TudBiT2Tt1vhzqld4iAXW9aFk9QG33sc1wfG9TxKK00-lWyaB5N2i02OLaBPacBLkjhFz6CmFgJgznNaH8BKO8DhVSn1C7vJ6VCNpsHECgA-A-gA8ZNmTkcoTBAamMJ2M4JLSWKaUjoxOrhNAC4iz0fZBRpkOjgNsjUnX_YDSdG2OMlp9__MfzE7LppqIsfIlOSSWfFXCGMT3X5-VcfgJZXZ3k
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA6i4OXF28S7EXxN7dKkaX2b07lpO4qbsLeRpCcg6jZG96C_3qS7eAHBt1AInDY033dyzvcFoQshFLVEgpIwNIIwkDGJTaAJDQyXWlsOnLvzjrQdNp_YfY_3ZmL1UgsDAGXzGXhuWNby86GeuKMy-4dHrupnd9wVC_ycTuVai403EixaReczG83LVr3W6WTM2U_aPJBybz79x0UqJY40NlF7HsG0feTFmxTK0x-_zBn_HeIWqnxJ9nC2AKNttASDHbTxzW1wF0XXGbnLule45pQYw_E7ds4c8hXf2BTUzcJl_wA26WOL2PjeRpaN4iRJK6jbuO3Wm2R2cQJ5joPCpYRU-NISwZxpSqtM-rHFecWlTX64cpU9IyxtM1EAgQqA-gA-5HYgQlclDPbQ8mA4gH2Eq7mUKtQqNpIxxSDKue-DCHPFtQRqDlDFfYP-aGqN0Z-__uEfz8_QWrObJv2k1X44QutuWco2mPAYLRfjCZxYhC_Uabmun84-oS4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=BP-GPT%3A+Auditory+Neural+Decoding+Using+fMRI-prompted+LLM&rft.au=Chen%2C+Xiaoyu&rft.au=Du%2C+Changde&rft.au=Liu%2C+Che&rft.au=Wang%2C+Yizhe&rft.date=2025-04-06&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICASSP49660.2025.10890142&rft.externalDocID=10890142