BP-GPT: Auditory Neural Decoding Using fMRI-prompted LLM
Decoding language information from brain signals represents a vital research area within brain-computer interfaces, particularly in the context of deciphering the semantic information from the fMRI signal. Although existing work uses LLM to achieve this goal, their method does not use an end-to-end...
Saved in:
Published in | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 1 - 5 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
06.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Decoding language information from brain signals represents a vital research area within brain-computer interfaces, particularly in the context of deciphering the semantic information from the fMRI signal. Although existing work uses LLM to achieve this goal, their method does not use an end-to-end approach and avoids the LLM in the mapping of fMRI-to-text, leaving space for the exploration of the LLM in auditory decoding. In this paper, we introduce a novel method, the Brain Prompt GPT (BP-GPT). By using the brain representation that is extracted from the fMRI as a prompt, our method can utilize GPT-2 to decode fMRI signals into stimulus text. Further, we introduce the text prompt and align the fMRI prompt to it. By introducing the text prompt, our BP-GPT can extract a more robust brain prompt and promote the decoding of pre-trained LLM. We evaluate our BP-GPT on the open-source auditory semantic decoding dataset and achieve a significant improvement up to 4.61% on METEOR and 2.43% on BERTScore across all the subjects compared to the state-of-the-art method. The experimental results demonstrate that using brain representation as a prompt to further drive LLM for auditory neural decoding is feasible and effective. The code is available at https://github.com/1994cxy/BP-GPT. |
---|---|
AbstractList | Decoding language information from brain signals represents a vital research area within brain-computer interfaces, particularly in the context of deciphering the semantic information from the fMRI signal. Although existing work uses LLM to achieve this goal, their method does not use an end-to-end approach and avoids the LLM in the mapping of fMRI-to-text, leaving space for the exploration of the LLM in auditory decoding. In this paper, we introduce a novel method, the Brain Prompt GPT (BP-GPT). By using the brain representation that is extracted from the fMRI as a prompt, our method can utilize GPT-2 to decode fMRI signals into stimulus text. Further, we introduce the text prompt and align the fMRI prompt to it. By introducing the text prompt, our BP-GPT can extract a more robust brain prompt and promote the decoding of pre-trained LLM. We evaluate our BP-GPT on the open-source auditory semantic decoding dataset and achieve a significant improvement up to 4.61% on METEOR and 2.43% on BERTScore across all the subjects compared to the state-of-the-art method. The experimental results demonstrate that using brain representation as a prompt to further drive LLM for auditory neural decoding is feasible and effective. The code is available at https://github.com/1994cxy/BP-GPT. |
Author | Wang, Yizhe He, Huiguang Du, Changde Chen, Xiaoyu Liu, Che |
Author_xml | – sequence: 1 givenname: Xiaoyu surname: Chen fullname: Chen, Xiaoyu organization: CASIA,NeuBCI Group, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology – sequence: 2 givenname: Changde surname: Du fullname: Du, Changde organization: CASIA,NeuBCI Group, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology – sequence: 3 givenname: Che surname: Liu fullname: Liu, Che organization: CASIA,NeuBCI Group, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology – sequence: 4 givenname: Yizhe surname: Wang fullname: Wang, Yizhe organization: CASIA,State Key Laboratory of Multimodal Artificial Intelligence Systems – sequence: 5 givenname: Huiguang surname: He fullname: He, Huiguang organization: CASIA,NeuBCI Group, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology |
BookMark | eNo1j0FLw0AUhFdRsK39Bx7iD9j49u1udtdbbbUWUg02greyaV4k0iYhSQ_990bUy8zAB8PMmF1UdUWM3QoIhQB3t5rPNptEuSiCEAF1KMA6EArP2NQZZ6UGGVmjxDkboTSOCwcfV2zcdV8AMAA7YvYh4cskvQ9mx7zs6_YUvNCx9ftgQbs6L6vP4L370WL9tuJNWx-anvIgjtfX7LLw-46mfz5h6dNjOn_m8etyGBbz0smeK0A04AEhVztEoTw4BJFpL4TSGTqtCiMxKqwkmUlCIALKh2AibbWQE3bzW1sS0bZpy4NvT9v_o_IbiaBG-A |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP49660.2025.10890142 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350368741 |
EISSN | 2379-190X |
EndPage | 5 |
ExternalDocumentID | 10890142 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
GroupedDBID | 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i93t-402270a020d4c2214a09201b5a1145b2954f7326f83e3b3e20ee0ed3e27658513 |
IEDL.DBID | RIE |
IngestDate | Wed Jul 30 06:10:25 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-402270a020d4c2214a09201b5a1145b2954f7326f83e3b3e20ee0ed3e27658513 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10890142 |
PublicationCentury | 2000 |
PublicationDate | 2025-April-6 |
PublicationDateYYYYMMDD | 2025-04-06 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-6 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008748 |
Score | 2.2881336 |
Snippet | Decoding language information from brain signals represents a vital research area within brain-computer interfaces, particularly in the context of deciphering... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | brain-computer interface Brain-computer interfaces Codes Decoding fMRI Functional magnetic resonance imaging large language model Large language models Meteors Neural decoding Semantics Signal processing Space exploration Speech processing |
Title | BP-GPT: Auditory Neural Decoding Using fMRI-prompted LLM |
URI | https://ieeexplore.ieee.org/document/10890142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66B9EXbxPvRPA1tUvTpvVtTucm2yhuwt5Gkp6AqNsY7YP-ek-6ixcQfAuF0LQhOd-Xc74vhFxKqTkCCc6iyEomQCUssYFhPLChMgYxcObOO7q9qPUkHobhcCFWL7UwAFAWn4HnmmUuP5uYwh2V4QqPXdYPd9x1ZG5zsdZq242liDfIxcJE86rdqPf7qXDmk8gCeegtO_-4RqWMIs1t0lu-f1488uIVufbMxy9rxn8PcIdUvwR7NF2Fol2yBuM9svXNa3CfxDcpu08H17TudBiT2Tt1vhzqld4iAXW9aFk9QG33sc1wfG9TxKK00-lWyaB5N2i02OLaBPacBLkjhFz6CmFgJgznNaH8BKO8DhVSn1C7vJ6VCNpsHECgA-A-gA8ZNmTkcoTBAamMJ2M4JLSWKaUjoxOrhNAC4iz0fZBRpkOjgNsjUnX_YDSdG2OMlp9__MfzE7LppqIsfIlOSSWfFXCGMT3X5-VcfgJZXZ3k |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA6i4OXF28S7EXxN7dKkaX2b07lpO4qbsLeRpCcg6jZG96C_3qS7eAHBt1AInDY033dyzvcFoQshFLVEgpIwNIIwkDGJTaAJDQyXWlsOnLvzjrQdNp_YfY_3ZmL1UgsDAGXzGXhuWNby86GeuKMy-4dHrupnd9wVC_ycTuVai403EixaReczG83LVr3W6WTM2U_aPJBybz79x0UqJY40NlF7HsG0feTFmxTK0x-_zBn_HeIWqnxJ9nC2AKNttASDHbTxzW1wF0XXGbnLule45pQYw_E7ds4c8hXf2BTUzcJl_wA26WOL2PjeRpaN4iRJK6jbuO3Wm2R2cQJ5joPCpYRU-NISwZxpSqtM-rHFecWlTX64cpU9IyxtM1EAgQqA-gA-5HYgQlclDPbQ8mA4gH2Eq7mUKtQqNpIxxSDKue-DCHPFtQRqDlDFfYP-aGqN0Z-__uEfz8_QWrObJv2k1X44QutuWco2mPAYLRfjCZxYhC_Uabmun84-oS4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=BP-GPT%3A+Auditory+Neural+Decoding+Using+fMRI-prompted+LLM&rft.au=Chen%2C+Xiaoyu&rft.au=Du%2C+Changde&rft.au=Liu%2C+Che&rft.au=Wang%2C+Yizhe&rft.date=2025-04-06&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICASSP49660.2025.10890142&rft.externalDocID=10890142 |