Adaptive Deep Knowledge Framework for classifying Sleep Stage using Deep Feature Learning
Conventional wisdom holds that sleep is a universal, simultaneous event that impacts every part of the brain. An electroencephalogram (EEG) is a non-stationary and nonlinear way to monitor brain electrical activity. EEG signals have many applications, from researching the most fundamental parts of t...
Saved in:
Published in | International Conference on Biosignals, Images and Instrumentation (Online) pp. 1 - 8 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
26.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2768-6450 |
DOI | 10.1109/ICBSII65145.2025.11013633 |
Cover
Abstract | Conventional wisdom holds that sleep is a universal, simultaneous event that impacts every part of the brain. An electroencephalogram (EEG) is a non-stationary and nonlinear way to monitor brain electrical activity. EEG signals have many applications, from researching the most fundamental parts of the sleep cycle to vital components of medical diagnosis. But up until recently, scientists didn't know much about the specifics of how distinct EEG characteristics relate to the stages of sleep. The feature extraction method was used immensely for accurately classifying EEG data throughout different stages of sleep. This research aims to use the Channel Based LSTM Convolution Network (CLCN) design to improve subject-independent classification accuracy. We compare this model's output to those of three other ML techniques. After comparing the suggested feature extraction method to the other available options, the findings show that it produces the best classification accuracy. Applying the SleepEDF EEG dataset to a five-class classification task yields the best classification accuracy of \mathrm{9 5 . 7 8 \%}. |
---|---|
AbstractList | Conventional wisdom holds that sleep is a universal, simultaneous event that impacts every part of the brain. An electroencephalogram (EEG) is a non-stationary and nonlinear way to monitor brain electrical activity. EEG signals have many applications, from researching the most fundamental parts of the sleep cycle to vital components of medical diagnosis. But up until recently, scientists didn't know much about the specifics of how distinct EEG characteristics relate to the stages of sleep. The feature extraction method was used immensely for accurately classifying EEG data throughout different stages of sleep. This research aims to use the Channel Based LSTM Convolution Network (CLCN) design to improve subject-independent classification accuracy. We compare this model's output to those of three other ML techniques. After comparing the suggested feature extraction method to the other available options, the findings show that it produces the best classification accuracy. Applying the SleepEDF EEG dataset to a five-class classification task yields the best classification accuracy of \mathrm{9 5 . 7 8 \%}. |
Author | Amoga Lekshmi, S Deepthi, R Amutha, R |
Author_xml | – sequence: 1 givenname: S surname: Amoga Lekshmi fullname: Amoga Lekshmi, S email: amoga2110161@ssn.edu.in organization: Sri Siva Subramaniya Nadar College of Engineering,Department of Electronics and Communication engineering,Chennai,India – sequence: 2 givenname: R surname: Deepthi fullname: Deepthi, R email: deepthi2110615@ssn.edu.in organization: Sri Siva Subramaniya Nadar College of Engineering,Department of Electronics and Communication engineering,Chennai,India – sequence: 3 givenname: R surname: Amutha fullname: Amutha, R email: amuthar@ssn.edu.in organization: Sri Siva Subramaniya Nadar College of Engineering,Department of Electronics and Communication engineering,Chennai,India |
BookMark | eNo1kM1OwzAQhA0CiVL6BhzMA6TY2dixjyUQiIjEIb1wqjbNugqkSeWkVH17Un5OI32aGY3mml20XUuM3Ukxl1LY-yx5KLJMKxmpeShCdaISNMAZm9nYGgCpJBgN52wSxtoEOlLiis36_kMIAaGU2tgJe19UuBvqL-KPRDv-2naHhqoN8dTjlg6d_-Su83zdYN_X7li3G140J2cx4Oja9yfyE00Jh70nnhP6dqQ37NJh09PsT6dsmT4tk5cgf3vOkkUe1BaGABCqyo6DnQWNqrToSClh1sIZZSJBUSTKUDtrUZAJjUNXVnHsYI3WycjClN3-1tZEtNr5eov-uPo_A74Bfk9Wvg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICBSII65145.2025.11013633 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798331513863 |
EISSN | 2768-6450 |
EndPage | 8 |
ExternalDocumentID | 11013633 |
Genre | orig-research |
GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-3a3dd9979f936a5b9afe5508c0f85840e440b26f99a0e828fafbd77f3ca9f1493 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 04 06:02:10 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-3a3dd9979f936a5b9afe5508c0f85840e440b26f99a0e828fafbd77f3ca9f1493 |
PageCount | 8 |
ParticipantIDs | ieee_primary_11013633 |
PublicationCentury | 2000 |
PublicationDate | 2025-March-26 |
PublicationDateYYYYMMDD | 2025-03-26 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-March-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Biosignals, Images and Instrumentation (Online) |
PublicationTitleAbbrev | ICBSII |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211689 |
Score | 1.9057733 |
Snippet | Conventional wisdom holds that sleep is a universal, simultaneous event that impacts every part of the brain. An electroencephalogram (EEG) is a non-stationary... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Brain modeling EEG Signal Feature Extraction EEG Signal Processing Electroencephalography Feature extraction Signal processing algorithms Sleep Sleeping Stage Classification Statistical analysis Time-frequency analysis Wavelet domain Wavelet transforms |
Title | Adaptive Deep Knowledge Framework for classifying Sleep Stage using Deep Feature Learning |
URI | https://ieeexplore.ieee.org/document/11013633 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62B_GkYsU3EbzudrvJZpujVkurWIRWqKeSx6QUpS1l9-Kvd7KPioLgLYQEwiTk-2Yy34SQG2lTh7hqAqVVEnCtsOUSFSCUGf9sB1p47fDzSAxe-eM0mVZi9UILAwBF8hmEvlm85duVyX2orI1Q1WGCsQZp4DkrxVrbgApDV0Z05S65rupotoe9u_FwKJASJOgIxklYz__xk0oBJP19MqqXUOaPvId5pkPz-as647_XeEBa35o9-rJFo0OyA8sj8nZr1dpfaPQeYE2f6gAa7dc5WRRJKzWeQi8KxRMdf_iRyEFxlE-Kn5dTPVXMN0CreqzzFpn0Hya9QVB9phAsJMsCppi1UqbSSSZUoqVygM5J10SuixwkAs4jHQsnpYoAvTCnnLZp6phR0qEXxY5Jc7lawgmhacdozlKLZIlxMFah2RPHNXcxh8i6U9LyZpmty3IZs9oiZ3_0n5M9vzs-sSsWF6SZbXK4RKTP9FWxw18ZJ6ke |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QX1SceLdCL6265o0XR51OlZ3QdiE-TRyHUPZxmhf_PWe9DJREHwLJS3hBPp95-T7ThC64zq2gKvKE1JEHpUCRjYSHkCZcsd2RjLnHR4MWfeVPk-iSWlWz70wxphcfGZ8N8zP8vVSZa5U1gCoahJGyDbaAeCnUWHX2pRUCCQzrMV30W3ZSbORtB9GScKAFESQCoaRX33hx10qOZR0DtCwWkShIHn3s1T66vNXf8Z_r_IQ1b9de_hlg0dHaMssjtHbvRYr90vDj8ascK8qoeFOpcrCQFuxciR6nnue8OjDzQQWCrOcLH5WvOrIYrY2uOzIOqujcedp3O565XUK3pyT1COCaM15zC0nTESSC2sgPWmpwLaAhQSG0kCGzHIuAgN5mBVW6ji2RAluIY8iJ6i2WC7MKcJxU0lKYg10iVCjtICwR5ZKakNqAm3PUN2FZboqGmZMq4ic__H8Bu11x4P-tJ8Mexdo3-2Uk3mF7BLV0nVmrgD3U3md7_YXJHusaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Biosignals%2C+Images+and+Instrumentation+%28Online%29&rft.atitle=Adaptive+Deep+Knowledge+Framework+for+classifying+Sleep+Stage+using+Deep+Feature+Learning&rft.au=Amoga+Lekshmi%2C+S&rft.au=Deepthi%2C+R&rft.au=Amutha%2C+R&rft.date=2025-03-26&rft.pub=IEEE&rft.eissn=2768-6450&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FICBSII65145.2025.11013633&rft.externalDocID=11013633 |