Adaptive Deep Knowledge Framework for classifying Sleep Stage using Deep Feature Learning

Conventional wisdom holds that sleep is a universal, simultaneous event that impacts every part of the brain. An electroencephalogram (EEG) is a non-stationary and nonlinear way to monitor brain electrical activity. EEG signals have many applications, from researching the most fundamental parts of t...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Biosignals, Images and Instrumentation (Online) pp. 1 - 8
Main Authors Amoga Lekshmi, S, Deepthi, R, Amutha, R
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.03.2025
Subjects
Online AccessGet full text
ISSN2768-6450
DOI10.1109/ICBSII65145.2025.11013633

Cover

Abstract Conventional wisdom holds that sleep is a universal, simultaneous event that impacts every part of the brain. An electroencephalogram (EEG) is a non-stationary and nonlinear way to monitor brain electrical activity. EEG signals have many applications, from researching the most fundamental parts of the sleep cycle to vital components of medical diagnosis. But up until recently, scientists didn't know much about the specifics of how distinct EEG characteristics relate to the stages of sleep. The feature extraction method was used immensely for accurately classifying EEG data throughout different stages of sleep. This research aims to use the Channel Based LSTM Convolution Network (CLCN) design to improve subject-independent classification accuracy. We compare this model's output to those of three other ML techniques. After comparing the suggested feature extraction method to the other available options, the findings show that it produces the best classification accuracy. Applying the SleepEDF EEG dataset to a five-class classification task yields the best classification accuracy of \mathrm{9 5 . 7 8 \%}.
AbstractList Conventional wisdom holds that sleep is a universal, simultaneous event that impacts every part of the brain. An electroencephalogram (EEG) is a non-stationary and nonlinear way to monitor brain electrical activity. EEG signals have many applications, from researching the most fundamental parts of the sleep cycle to vital components of medical diagnosis. But up until recently, scientists didn't know much about the specifics of how distinct EEG characteristics relate to the stages of sleep. The feature extraction method was used immensely for accurately classifying EEG data throughout different stages of sleep. This research aims to use the Channel Based LSTM Convolution Network (CLCN) design to improve subject-independent classification accuracy. We compare this model's output to those of three other ML techniques. After comparing the suggested feature extraction method to the other available options, the findings show that it produces the best classification accuracy. Applying the SleepEDF EEG dataset to a five-class classification task yields the best classification accuracy of \mathrm{9 5 . 7 8 \%}.
Author Amoga Lekshmi, S
Deepthi, R
Amutha, R
Author_xml – sequence: 1
  givenname: S
  surname: Amoga Lekshmi
  fullname: Amoga Lekshmi, S
  email: amoga2110161@ssn.edu.in
  organization: Sri Siva Subramaniya Nadar College of Engineering,Department of Electronics and Communication engineering,Chennai,India
– sequence: 2
  givenname: R
  surname: Deepthi
  fullname: Deepthi, R
  email: deepthi2110615@ssn.edu.in
  organization: Sri Siva Subramaniya Nadar College of Engineering,Department of Electronics and Communication engineering,Chennai,India
– sequence: 3
  givenname: R
  surname: Amutha
  fullname: Amutha, R
  email: amuthar@ssn.edu.in
  organization: Sri Siva Subramaniya Nadar College of Engineering,Department of Electronics and Communication engineering,Chennai,India
BookMark eNo1kM1OwzAQhA0CiVL6BhzMA6TY2dixjyUQiIjEIb1wqjbNugqkSeWkVH17Un5OI32aGY3mml20XUuM3Ukxl1LY-yx5KLJMKxmpeShCdaISNMAZm9nYGgCpJBgN52wSxtoEOlLiis36_kMIAaGU2tgJe19UuBvqL-KPRDv-2naHhqoN8dTjlg6d_-Su83zdYN_X7li3G140J2cx4Oja9yfyE00Jh70nnhP6dqQ37NJh09PsT6dsmT4tk5cgf3vOkkUe1BaGABCqyo6DnQWNqrToSClh1sIZZSJBUSTKUDtrUZAJjUNXVnHsYI3WycjClN3-1tZEtNr5eov-uPo_A74Bfk9Wvg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICBSII65145.2025.11013633
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331513863
EISSN 2768-6450
EndPage 8
ExternalDocumentID 11013633
Genre orig-research
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-3a3dd9979f936a5b9afe5508c0f85840e440b26f99a0e828fafbd77f3ca9f1493
IEDL.DBID RIE
IngestDate Wed Jun 04 06:02:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-3a3dd9979f936a5b9afe5508c0f85840e440b26f99a0e828fafbd77f3ca9f1493
PageCount 8
ParticipantIDs ieee_primary_11013633
PublicationCentury 2000
PublicationDate 2025-March-26
PublicationDateYYYYMMDD 2025-03-26
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-March-26
  day: 26
PublicationDecade 2020
PublicationTitle International Conference on Biosignals, Images and Instrumentation (Online)
PublicationTitleAbbrev ICBSII
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211689
Score 1.9057733
Snippet Conventional wisdom holds that sleep is a universal, simultaneous event that impacts every part of the brain. An electroencephalogram (EEG) is a non-stationary...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Brain modeling
EEG Signal Feature Extraction
EEG Signal Processing
Electroencephalography
Feature extraction
Signal processing algorithms
Sleep
Sleeping Stage Classification
Statistical analysis
Time-frequency analysis
Wavelet domain
Wavelet transforms
Title Adaptive Deep Knowledge Framework for classifying Sleep Stage using Deep Feature Learning
URI https://ieeexplore.ieee.org/document/11013633
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62B_GkYsU3EbzudrvJZpujVkurWIRWqKeSx6QUpS1l9-Kvd7KPioLgLYQEwiTk-2Yy34SQG2lTh7hqAqVVEnCtsOUSFSCUGf9sB1p47fDzSAxe-eM0mVZi9UILAwBF8hmEvlm85duVyX2orI1Q1WGCsQZp4DkrxVrbgApDV0Z05S65rupotoe9u_FwKJASJOgIxklYz__xk0oBJP19MqqXUOaPvId5pkPz-as647_XeEBa35o9-rJFo0OyA8sj8nZr1dpfaPQeYE2f6gAa7dc5WRRJKzWeQi8KxRMdf_iRyEFxlE-Kn5dTPVXMN0CreqzzFpn0Hya9QVB9phAsJMsCppi1UqbSSSZUoqVygM5J10SuixwkAs4jHQsnpYoAvTCnnLZp6phR0qEXxY5Jc7lawgmhacdozlKLZIlxMFah2RPHNXcxh8i6U9LyZpmty3IZs9oiZ3_0n5M9vzs-sSsWF6SZbXK4RKTP9FWxw18ZJ6ke
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QX1SceLdCL6265o0XR51OlZ3QdiE-TRyHUPZxmhf_PWe9DJREHwLJS3hBPp95-T7ThC64zq2gKvKE1JEHpUCRjYSHkCZcsd2RjLnHR4MWfeVPk-iSWlWz70wxphcfGZ8N8zP8vVSZa5U1gCoahJGyDbaAeCnUWHX2pRUCCQzrMV30W3ZSbORtB9GScKAFESQCoaRX33hx10qOZR0DtCwWkShIHn3s1T66vNXf8Z_r_IQ1b9de_hlg0dHaMssjtHbvRYr90vDj8ascK8qoeFOpcrCQFuxciR6nnue8OjDzQQWCrOcLH5WvOrIYrY2uOzIOqujcedp3O565XUK3pyT1COCaM15zC0nTESSC2sgPWmpwLaAhQSG0kCGzHIuAgN5mBVW6ji2RAluIY8iJ6i2WC7MKcJxU0lKYg10iVCjtICwR5ZKakNqAm3PUN2FZboqGmZMq4ic__H8Bu11x4P-tJ8Mexdo3-2Uk3mF7BLV0nVmrgD3U3md7_YXJHusaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Biosignals%2C+Images+and+Instrumentation+%28Online%29&rft.atitle=Adaptive+Deep+Knowledge+Framework+for+classifying+Sleep+Stage+using+Deep+Feature+Learning&rft.au=Amoga+Lekshmi%2C+S&rft.au=Deepthi%2C+R&rft.au=Amutha%2C+R&rft.date=2025-03-26&rft.pub=IEEE&rft.eissn=2768-6450&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FICBSII65145.2025.11013633&rft.externalDocID=11013633