CapsNet-Based Deep Learning Approach for Robust Image Forgery Detection

One common form of image tampering is image manipulation, where a section of an image is duplicated and pasted within the same image to conceal or replicate content. Detecting such manipulations is essential in digital image forensics, especially in critical domains like journalism, law enforcement,...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Signal Processing and Communication (Online) pp. 308 - 314
Main Authors Joshi, Deepak, Kashyap, Abhishek, Arora, Parul
Format Conference Proceeding
LanguageEnglish
Published IEEE 20.02.2025
Subjects
Online AccessGet full text
ISSN2643-444X
DOI10.1109/ICSC64553.2025.10968321

Cover

Abstract One common form of image tampering is image manipulation, where a section of an image is duplicated and pasted within the same image to conceal or replicate content. Detecting such manipulations is essential in digital image forensics, especially in critical domains like journalism, law enforcement, and social media. Traditional image manipulation detection methods struggle with identifying tampered regions due to sophisticated forgery techniques and post-processing like scaling, rotation, and noise addition. In this paper, we explore the application of Capsule Networks (CapsNets) in detecting copy-move or splicing image manipulation. CapsNets offer an advantage in preserving spatial hierarchies between features and improving detection performance under transformations. Experimental results demonstrate that CapsNets outperform conventional Convolutional Neural Networks (CNNs) in detecting copy-move or splicing forgery under various conditions, including scaling, rotation, and added noise.
AbstractList One common form of image tampering is image manipulation, where a section of an image is duplicated and pasted within the same image to conceal or replicate content. Detecting such manipulations is essential in digital image forensics, especially in critical domains like journalism, law enforcement, and social media. Traditional image manipulation detection methods struggle with identifying tampered regions due to sophisticated forgery techniques and post-processing like scaling, rotation, and noise addition. In this paper, we explore the application of Capsule Networks (CapsNets) in detecting copy-move or splicing image manipulation. CapsNets offer an advantage in preserving spatial hierarchies between features and improving detection performance under transformations. Experimental results demonstrate that CapsNets outperform conventional Convolutional Neural Networks (CNNs) in detecting copy-move or splicing forgery under various conditions, including scaling, rotation, and added noise.
Author Joshi, Deepak
Kashyap, Abhishek
Arora, Parul
Author_xml – sequence: 1
  givenname: Deepak
  surname: Joshi
  fullname: Joshi, Deepak
  email: deepak.ji.joshi@gmail.com
  organization: Jaypee Institute of Information technology,Electronics and Communication Engineering,Noida,India
– sequence: 2
  givenname: Abhishek
  surname: Kashyap
  fullname: Kashyap, Abhishek
  email: abhishek.kashyap@jiit.ac.in
  organization: Jaypee Institute of Information technology,Electronics and Communication Engineering,Noida,India
– sequence: 3
  givenname: Parul
  surname: Arora
  fullname: Arora, Parul
  email: parul.arora@jiit.ac.in
  organization: Jaypee Institute of Information technology,Electronics and Communication Engineering,Noida,India
BookMark eNo1j9FKwzAUhqMoOGffQDAv0JmTk2TN5azbLBQF3YV3I01PasW1Ja0Xe3sH6tUPHx8f_Nfsous7YuwOxAJA2Psif8uN0hoXUki9OCGToYQzltilzRBBA2RWnLOZNApTpdT7FUvG8VMIgVLgUsOMbXM3jM80pQ9upJo_Eg28JBe7tmv4ahhi7_wHD33kr331PU68OLiG-KaPDcXjyZ_IT23f3bDL4L5GSv52znab9S5_SsuXbZGvyrS1OKWYBS0JNJKvjA62slQ55UVN0joymUAg0qYWoSarvPQAVmMQpCmAtIBzdvubbYloP8T24OJx_38dfwDo109z
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSC64553.2025.10968321
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331511890
EISSN 2643-444X
EndPage 314
ExternalDocumentID 10968321
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-38f52e153ecb65f9b9eba4c0de29ae68031ee56d0fde94c2c11953f0e5ef12913
IEDL.DBID RIE
IngestDate Wed Apr 30 05:50:38 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-38f52e153ecb65f9b9eba4c0de29ae68031ee56d0fde94c2c11953f0e5ef12913
PageCount 7
ParticipantIDs ieee_primary_10968321
PublicationCentury 2000
PublicationDate 2025-Feb.-20
PublicationDateYYYYMMDD 2025-02-20
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb.-20
  day: 20
PublicationDecade 2020
PublicationTitle International Conference on Signal Processing and Communication (Online)
PublicationTitleAbbrev ICSC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203751
Score 1.9015951
Snippet One common form of image tampering is image manipulation, where a section of an image is duplicated and pasted within the same image to conceal or replicate...
SourceID ieee
SourceType Publisher
StartPage 308
SubjectTerms CapsNets
Convolutional neural networks
Convolutional Neural Networks (CNNs)
Copy-move forgery
Deep learning
Feature extraction
Forgery
Image forensics
Journalism
Law enforcement
Manipulation detection
Noise
Social networking (online)
Splicing
Title CapsNet-Based Deep Learning Approach for Robust Image Forgery Detection
URI https://ieeexplore.ieee.org/document/10968321
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8MgFCe6k178mvE7HLxS21KwPWp1biYuRmey21LgYYyxXVx78a_3wbr5kZh4IwQSAjweD97v9yPkNI1sBEmaMYmxAEuKSDBlI84KoQqwRkqhHDj5bij7T8ntWIxbsLrHwgCATz6DwBX9X76pdOOeytDCM-mUdVbJKu6zOVhr-aDCYyfnGrU5XNj0bJA_5jIRgmMYGItg0fuHjop3I70NMlwMYJ498ho0tQr0xy9uxn-PcJN0vxB79H7pi7bICpTbZP0b2eAOucmL6WwINbtEx2XoFcCUtuyqz_SipRaneIelD5VqZjUdvOFZQ3uVx01j-9pnbZVdMupdj_I-a2UU2EvGa8ZTK2LAgw20ksJmKgNVJDo0EGcFyBStGkBIE1oDWaJj7UjguA1BgMXLQMR3SaesStgj1GI0aZw2fSrPE4mmbwUonUoB2I0ruU-6bkom0zlRxmQxGwd_1B-SNbcyHiEeHpFO_d7AMfr4Wp34tf0EsY2lZA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHIALWxE7PnBNSOKF5AiB0kIbISgStypOxgghkoomF76esZuWRULiFlm2ZNkaP48z7z1CTkJf-8DDyJGYCzg89YWjtM-cVKgUdC6lUIacPEhk95HfPImnhqxuuTAAYIvPwDWf9l9-Xma1eSrDCI-kcdZZJEsI_FxM6VrzJxUWGENXv6niws6nvfghllwIholgINzZ-B9OKhZIOmskmU1hWj_y6taVcrOPX-qM_57jOml_cfbo3RyNNsgCFJtk9Zvc4Ba5jtPxJIHKuUDoyuklwJg2-qrP9LwRF6d4i6X3paonFe294WlDO6VlTmP_ytZtFW0y7FwN467TGCk4LxGrHBZqEQAebZApKXSkIlApz7wcgigFGWJcAwiZezqHiGdBZmTgmPZAgMbrgM-2SasoC9ghVGM-mRt3-lCecYnBrwWoLJQCcBhTcpe0zZKMxlOpjNFsNfb-aD8my93hoD_q95LbfbJidsnyxb0D0qreazhExK_Ukd3nT41RqLE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Signal+Processing+and+Communication+%28Online%29&rft.atitle=CapsNet-Based+Deep+Learning+Approach+for+Robust+Image+Forgery+Detection&rft.au=Joshi%2C+Deepak&rft.au=Kashyap%2C+Abhishek&rft.au=Arora%2C+Parul&rft.date=2025-02-20&rft.pub=IEEE&rft.eissn=2643-444X&rft.spage=308&rft.epage=314&rft_id=info:doi/10.1109%2FICSC64553.2025.10968321&rft.externalDocID=10968321