CapsNet-Based Deep Learning Approach for Robust Image Forgery Detection
One common form of image tampering is image manipulation, where a section of an image is duplicated and pasted within the same image to conceal or replicate content. Detecting such manipulations is essential in digital image forensics, especially in critical domains like journalism, law enforcement,...
Saved in:
Published in | International Conference on Signal Processing and Communication (Online) pp. 308 - 314 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
20.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2643-444X |
DOI | 10.1109/ICSC64553.2025.10968321 |
Cover
Abstract | One common form of image tampering is image manipulation, where a section of an image is duplicated and pasted within the same image to conceal or replicate content. Detecting such manipulations is essential in digital image forensics, especially in critical domains like journalism, law enforcement, and social media. Traditional image manipulation detection methods struggle with identifying tampered regions due to sophisticated forgery techniques and post-processing like scaling, rotation, and noise addition. In this paper, we explore the application of Capsule Networks (CapsNets) in detecting copy-move or splicing image manipulation. CapsNets offer an advantage in preserving spatial hierarchies between features and improving detection performance under transformations. Experimental results demonstrate that CapsNets outperform conventional Convolutional Neural Networks (CNNs) in detecting copy-move or splicing forgery under various conditions, including scaling, rotation, and added noise. |
---|---|
AbstractList | One common form of image tampering is image manipulation, where a section of an image is duplicated and pasted within the same image to conceal or replicate content. Detecting such manipulations is essential in digital image forensics, especially in critical domains like journalism, law enforcement, and social media. Traditional image manipulation detection methods struggle with identifying tampered regions due to sophisticated forgery techniques and post-processing like scaling, rotation, and noise addition. In this paper, we explore the application of Capsule Networks (CapsNets) in detecting copy-move or splicing image manipulation. CapsNets offer an advantage in preserving spatial hierarchies between features and improving detection performance under transformations. Experimental results demonstrate that CapsNets outperform conventional Convolutional Neural Networks (CNNs) in detecting copy-move or splicing forgery under various conditions, including scaling, rotation, and added noise. |
Author | Joshi, Deepak Kashyap, Abhishek Arora, Parul |
Author_xml | – sequence: 1 givenname: Deepak surname: Joshi fullname: Joshi, Deepak email: deepak.ji.joshi@gmail.com organization: Jaypee Institute of Information technology,Electronics and Communication Engineering,Noida,India – sequence: 2 givenname: Abhishek surname: Kashyap fullname: Kashyap, Abhishek email: abhishek.kashyap@jiit.ac.in organization: Jaypee Institute of Information technology,Electronics and Communication Engineering,Noida,India – sequence: 3 givenname: Parul surname: Arora fullname: Arora, Parul email: parul.arora@jiit.ac.in organization: Jaypee Institute of Information technology,Electronics and Communication Engineering,Noida,India |
BookMark | eNo1j9FKwzAUhqMoOGffQDAv0JmTk2TN5azbLBQF3YV3I01PasW1Ja0Xe3sH6tUPHx8f_Nfsous7YuwOxAJA2Psif8uN0hoXUki9OCGToYQzltilzRBBA2RWnLOZNApTpdT7FUvG8VMIgVLgUsOMbXM3jM80pQ9upJo_Eg28JBe7tmv4ahhi7_wHD33kr331PU68OLiG-KaPDcXjyZ_IT23f3bDL4L5GSv52znab9S5_SsuXbZGvyrS1OKWYBS0JNJKvjA62slQ55UVN0joymUAg0qYWoSarvPQAVmMQpCmAtIBzdvubbYloP8T24OJx_38dfwDo109z |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICSC64553.2025.10968321 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798331511890 |
EISSN | 2643-444X |
EndPage | 314 |
ExternalDocumentID | 10968321 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-38f52e153ecb65f9b9eba4c0de29ae68031ee56d0fde94c2c11953f0e5ef12913 |
IEDL.DBID | RIE |
IngestDate | Wed Apr 30 05:50:38 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-38f52e153ecb65f9b9eba4c0de29ae68031ee56d0fde94c2c11953f0e5ef12913 |
PageCount | 7 |
ParticipantIDs | ieee_primary_10968321 |
PublicationCentury | 2000 |
PublicationDate | 2025-Feb.-20 |
PublicationDateYYYYMMDD | 2025-02-20 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-Feb.-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Signal Processing and Communication (Online) |
PublicationTitleAbbrev | ICSC |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003203751 |
Score | 1.9015951 |
Snippet | One common form of image tampering is image manipulation, where a section of an image is duplicated and pasted within the same image to conceal or replicate... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 308 |
SubjectTerms | CapsNets Convolutional neural networks Convolutional Neural Networks (CNNs) Copy-move forgery Deep learning Feature extraction Forgery Image forensics Journalism Law enforcement Manipulation detection Noise Social networking (online) Splicing |
Title | CapsNet-Based Deep Learning Approach for Robust Image Forgery Detection |
URI | https://ieeexplore.ieee.org/document/10968321 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8MgFCe6k178mvE7HLxS21KwPWp1biYuRmey21LgYYyxXVx78a_3wbr5kZh4IwQSAjweD97v9yPkNI1sBEmaMYmxAEuKSDBlI84KoQqwRkqhHDj5bij7T8ntWIxbsLrHwgCATz6DwBX9X76pdOOeytDCM-mUdVbJKu6zOVhr-aDCYyfnGrU5XNj0bJA_5jIRgmMYGItg0fuHjop3I70NMlwMYJ498ho0tQr0xy9uxn-PcJN0vxB79H7pi7bICpTbZP0b2eAOucmL6WwINbtEx2XoFcCUtuyqz_SipRaneIelD5VqZjUdvOFZQ3uVx01j-9pnbZVdMupdj_I-a2UU2EvGa8ZTK2LAgw20ksJmKgNVJDo0EGcFyBStGkBIE1oDWaJj7UjguA1BgMXLQMR3SaesStgj1GI0aZw2fSrPE4mmbwUonUoB2I0ruU-6bkom0zlRxmQxGwd_1B-SNbcyHiEeHpFO_d7AMfr4Wp34tf0EsY2lZA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHIALWxE7PnBNSOKF5AiB0kIbISgStypOxgghkoomF76esZuWRULiFlm2ZNkaP48z7z1CTkJf-8DDyJGYCzg89YWjtM-cVKgUdC6lUIacPEhk95HfPImnhqxuuTAAYIvPwDWf9l9-Xma1eSrDCI-kcdZZJEsI_FxM6VrzJxUWGENXv6niws6nvfghllwIholgINzZ-B9OKhZIOmskmU1hWj_y6taVcrOPX-qM_57jOml_cfbo3RyNNsgCFJtk9Zvc4Ba5jtPxJIHKuUDoyuklwJg2-qrP9LwRF6d4i6X3paonFe294WlDO6VlTmP_ytZtFW0y7FwN467TGCk4LxGrHBZqEQAebZApKXSkIlApz7wcgigFGWJcAwiZezqHiGdBZmTgmPZAgMbrgM-2SasoC9ghVGM-mRt3-lCecYnBrwWoLJQCcBhTcpe0zZKMxlOpjNFsNfb-aD8my93hoD_q95LbfbJidsnyxb0D0qreazhExK_Ukd3nT41RqLE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Signal+Processing+and+Communication+%28Online%29&rft.atitle=CapsNet-Based+Deep+Learning+Approach+for+Robust+Image+Forgery+Detection&rft.au=Joshi%2C+Deepak&rft.au=Kashyap%2C+Abhishek&rft.au=Arora%2C+Parul&rft.date=2025-02-20&rft.pub=IEEE&rft.eissn=2643-444X&rft.spage=308&rft.epage=314&rft_id=info:doi/10.1109%2FICSC64553.2025.10968321&rft.externalDocID=10968321 |