Decentralized Data Validation for Ethical AI Training

The model presented in this work represents a paradigm shift that sets a completely novel standard for data distributed validation in ethical AI training. Our new paradigm integrates fault-tolerant Byzantine consensus along with zero-knowledge proofs for secured and provable auditing of data within...

Full description

Saved in:
Bibliographic Details
Published in2025 International Conference on Computational Robotics, Testing and Engineering Evaluation (ICCRTEE) pp. 1 - 6
Main Authors Sheeba, R., Mahto, Jay Prakash, Ansari, Syed Sabith, Surani, Zian Rajeshkumar, Chinnasamy, P., Alagarsamy, Manjunathan
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.05.2025
Subjects
Online AccessGet full text
DOI10.1109/ICCRTEE64519.2025.11053001

Cover

Abstract The model presented in this work represents a paradigm shift that sets a completely novel standard for data distributed validation in ethical AI training. Our new paradigm integrates fault-tolerant Byzantine consensus along with zero-knowledge proofs for secured and provable auditing of data within decentralized AI systems. The framework uses a two-layer blockchain design that separates metadata anchoring from validation logs, allowing it to achieve an instantaneous compliance check time of less than one second while maintaining privacy compliance to GDPR. Key innovations comprise a sharded Merkle-Patricia Trie kind for dynamic data lineage chains, the application of differential privacy and federated learning with bias-neutralizing validation oracles, as well as the design of incentive engineering under a non-Markovian reward system for multiple agents. The results of experimentation prove that, under adversarial conditions, the detection of anomalies is 40% faster than centralized alternatives, while maintaining an integrity verification of the audit trail at 99.99%. The collaboration between AI explainability matrices and post-quantum secure voting mechanisms in this work set innovative standards for decentralized ethical oversight of mission-critical operations, thus transforming the trust dynamics among model developers, data subjects, and auditors.
AbstractList The model presented in this work represents a paradigm shift that sets a completely novel standard for data distributed validation in ethical AI training. Our new paradigm integrates fault-tolerant Byzantine consensus along with zero-knowledge proofs for secured and provable auditing of data within decentralized AI systems. The framework uses a two-layer blockchain design that separates metadata anchoring from validation logs, allowing it to achieve an instantaneous compliance check time of less than one second while maintaining privacy compliance to GDPR. Key innovations comprise a sharded Merkle-Patricia Trie kind for dynamic data lineage chains, the application of differential privacy and federated learning with bias-neutralizing validation oracles, as well as the design of incentive engineering under a non-Markovian reward system for multiple agents. The results of experimentation prove that, under adversarial conditions, the detection of anomalies is 40% faster than centralized alternatives, while maintaining an integrity verification of the audit trail at 99.99%. The collaboration between AI explainability matrices and post-quantum secure voting mechanisms in this work set innovative standards for decentralized ethical oversight of mission-critical operations, thus transforming the trust dynamics among model developers, data subjects, and auditors.
Author Surani, Zian Rajeshkumar
Ansari, Syed Sabith
Sheeba, R.
Mahto, Jay Prakash
Chinnasamy, P.
Alagarsamy, Manjunathan
Author_xml – sequence: 1
  givenname: R.
  surname: Sheeba
  fullname: Sheeba, R.
  email: pinkshylu@gmail.com
  organization: SRM Institute of Science and Technology,School of Computing,Tiruchirappalli,Tamilnadu,India
– sequence: 2
  givenname: Jay Prakash
  surname: Mahto
  fullname: Mahto, Jay Prakash
  email: jayprakashmahto03@gmail.com
  organization: SRM Institute of Science and Technology,School of Computing,Tiruchirappalli,Tamilnadu,India
– sequence: 3
  givenname: Syed Sabith
  surname: Ansari
  fullname: Ansari, Syed Sabith
  email: sabithansari989@gmail.com
  organization: SRM Institute of Science and Technology,School of Computing,Tiruchirappalli,Tamilnadu,India
– sequence: 4
  givenname: Zian Rajeshkumar
  surname: Surani
  fullname: Surani, Zian Rajeshkumar
  email: zian.surani@gmail.com
  organization: SRM Institute of Science and Technology,School of Computing,Tiruchirappalli,Tamilnadu,India
– sequence: 5
  givenname: P.
  surname: Chinnasamy
  fullname: Chinnasamy, P.
  email: chinnasamyponnusamy@gmail.com
  organization: Kalasalingam Academy of Research and Education,School of Computing,Krishnankoil,Tamilnadu,India
– sequence: 6
  givenname: Manjunathan
  surname: Alagarsamy
  fullname: Alagarsamy, Manjunathan
  email: manjunathankrct@gmail.com
  organization: K.Ramakrishnan College of Technology,Department of ECE,Tiruchirappalli,Tamilnadu,India
BookMark eNo1j0FLxDAUhCPoQdf9Bx6C965JXtLmHZdu1cKCoMXr8rZ91UBNJeaiv96KehiG-Q7DzIU4jXNkIa612mit8Kat68euaUrrNG6MMu4HO1BKn4g1VugBtMNKoTkXbsc9x5xoCl88yB1lks9LGCiHOcpxTrLJr6GnSW5b2SUKMcSXS3E20vTB6z9fiafbpqvvi_3DXVtv90VAyAV4ZazXutQG7YhYLvLLKu8JdMU0EAFbo6qj5d5UAEf2tjQOSgsOHazE1W9rYObDewpvlD4P_1_gG0byQdA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCRTEE64519.2025.11053001
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331597092
EndPage 6
ExternalDocumentID 11053001
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-3802481161294f996f99864588a317eadaa3e4207b4ec2733be8462536435953
IEDL.DBID RIE
IngestDate Thu Jul 10 06:35:04 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-3802481161294f996f99864588a317eadaa3e4207b4ec2733be8462536435953
PageCount 6
ParticipantIDs ieee_primary_11053001
PublicationCentury 2000
PublicationDate 2025-May-28
PublicationDateYYYYMMDD 2025-05-28
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-28
  day: 28
PublicationDecade 2020
PublicationTitle 2025 International Conference on Computational Robotics, Testing and Engineering Evaluation (ICCRTEE)
PublicationTitleAbbrev ICCRTEE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9122398
Snippet The model presented in this work represents a paradigm shift that sets a completely novel standard for data distributed validation in ethical AI training. Our...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial intelligence
Blockchain
Blockchains
Byzantine Fault Tolerance
Decentralized AI
Ethical AI training
Ethics
Fault tolerance
Fault tolerant systems
Federated learning
GDPR Compliance
Merkle-Patricia Trie
Non-Markovian Rewards
Training
Transformers
Zero knowledge proof
Zero-Knowledge Proofs
Title Decentralized Data Validation for Ethical AI Training
URI https://ieeexplore.ieee.org/document/11053001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7akycVK77JwetuN89NjtIHrWARrNJbSTazUJRWZHvpr3eyu1UUBA-BJBDyhPmSzPcNIbdlyfPSgE6CcDKRgbPEG6UTYL6wMoPMuvje8TDV42d5P1fzlqxec2EAoHY-gzRm67_8sC428amsh6ZKiSyytfbxnDVkrVZIlGW2N-n3EQMOdVRMwZsfV-muwY_QKbXlGB2S6a7PxmHkNd1UPi22v-QY_z2oI9L9JunRxy_zc0z2YHVC1ABad8vlFgIduMrRFyw0kZMoIlRae7i7N3o3obM2PkSXPI2Gs_44aSMjJEsrqkSYqETGEKxxK0u8sWAyOnJOHcIBPBvOCZA8y72EAvGJ8IAwgyuB8ENZJU5JZ7VewRmhhgkdRCikBSVZHrxwKnCrC-e8yw07J90448V7I32x2E324o_6S3IQFz5-r3NzRTrVxwau0WpX_qberU_etpWD
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA0yH_RJxYnf5sHXdm2-2jzKPth0G4JT9jaS5haGsom0L_v13rSdoiD4EEgKIQkpnJPknnMJuc1zluQpqMBxIwLhWBzYVKoAYptpEUGkjb_vmEzV8Fncz-W8EatXWhgAqILPIPTV6i3frbPSX5V1EKokj7xaaxeBX8hartVYicaR7oy6XWSBfeU9U_Dsx2S47fIjeUqFHYMDMt2OWoeMvIZlYcNs88uQ8d_TOiTtb5keffwCoCOyA6tjInvQBFwuN-BozxSGvmCjzp1EkaPSKsbdvNG7EZ01GSLa5GnQn3WHQZMbIVhqXgQ89V5kMdI1pkWOZxYsqfKqU4OEAP8OYzgIFiVWQIYMhVtAosEkRwIiteQnpLVar-CU0DTmynGXCQ1SxImz3EjHtMqMsSZJ4zPS9itevNfmF4vtYs__-H5D9oazyXgxHk0fLsi-3wT_2M7SS9IqPkq4Qgwv7HW1c5_pb5jQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+International+Conference+on+Computational+Robotics%2C+Testing+and+Engineering+Evaluation+%28ICCRTEE%29&rft.atitle=Decentralized+Data+Validation+for+Ethical+AI+Training&rft.au=Sheeba%2C+R.&rft.au=Mahto%2C+Jay+Prakash&rft.au=Ansari%2C+Syed+Sabith&rft.au=Surani%2C+Zian+Rajeshkumar&rft.date=2025-05-28&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICCRTEE64519.2025.11053001&rft.externalDocID=11053001