XGraphRAG: Interactive Visual Analysis for Graph-based Retrieval-Augmented Generation

Graph-based Retrieval-Augmented Generation (RAG) has shown great capability in enhancing Large Language Model (LLM)'s answer with an external knowledge base. Compared to traditional RAG, it introduces a graph as an intermediate representation to capture better structured relational knowledge in...

Full description

Saved in:
Bibliographic Details
Published inIEEE Pacific Visualization Symposium pp. 1 - 11
Main Authors Wang, Ke, Pan, Bo, Feng, Yingchaojie, Wu, Yuwei, Chen, Jieyi, Zhu, Minfeng, Chen, Wei
Format Conference Proceeding
LanguageEnglish
Published IEEE 22.04.2025
Subjects
Online AccessGet full text
ISSN2165-8773
DOI10.1109/PacificVis64226.2025.00005

Cover

Loading…
Abstract Graph-based Retrieval-Augmented Generation (RAG) has shown great capability in enhancing Large Language Model (LLM)'s answer with an external knowledge base. Compared to traditional RAG, it introduces a graph as an intermediate representation to capture better structured relational knowledge in the corpus, elevating the precision and comprehensiveness of generation results. However, developers usually face challenges in analyzing the effectiveness of GraphRAG on their dataset due to GraphRAG's complex information processing pipeline and the overwhelming amount of LLM invocations involved during graph construction and query, which limits GraphRAG interpretability and accessibility. This research proposes a visual analysis framework that helps RAG developers identify critical recalls of GraphRAG and trace these recalls through the GraphRAG pipeline. Based on this framework, we develop XGraphRAG, a prototype system incorporating a set of interactive visualizations to facilitate users' analysis process, boosting failure cases collection and improvement opportunities identification. Our evaluation demonstrates the effectiveness and usability of our approach. Our work is open-sourced and available at https://github.com/Gk0Wk/XGraphRAG.
AbstractList Graph-based Retrieval-Augmented Generation (RAG) has shown great capability in enhancing Large Language Model (LLM)'s answer with an external knowledge base. Compared to traditional RAG, it introduces a graph as an intermediate representation to capture better structured relational knowledge in the corpus, elevating the precision and comprehensiveness of generation results. However, developers usually face challenges in analyzing the effectiveness of GraphRAG on their dataset due to GraphRAG's complex information processing pipeline and the overwhelming amount of LLM invocations involved during graph construction and query, which limits GraphRAG interpretability and accessibility. This research proposes a visual analysis framework that helps RAG developers identify critical recalls of GraphRAG and trace these recalls through the GraphRAG pipeline. Based on this framework, we develop XGraphRAG, a prototype system incorporating a set of interactive visualizations to facilitate users' analysis process, boosting failure cases collection and improvement opportunities identification. Our evaluation demonstrates the effectiveness and usability of our approach. Our work is open-sourced and available at https://github.com/Gk0Wk/XGraphRAG.
Author Chen, Wei
Feng, Yingchaojie
Pan, Bo
Wang, Ke
Chen, Jieyi
Wu, Yuwei
Zhu, Minfeng
Author_xml – sequence: 1
  givenname: Ke
  surname: Wang
  fullname: Wang, Ke
  email: sttotphd@zju.edu.cn
  organization: Zhejiang University,State Key Lab of CAD&CG
– sequence: 2
  givenname: Bo
  surname: Pan
  fullname: Pan, Bo
  email: bopan@zju.edu.cn
  organization: Zhejiang University,State Key Lab of CAD&CG
– sequence: 3
  givenname: Yingchaojie
  surname: Feng
  fullname: Feng, Yingchaojie
  email: fycj@zju.edu.cn
  organization: Zhejiang University,State Key Lab of CAD&CG
– sequence: 4
  givenname: Yuwei
  surname: Wu
  fullname: Wu, Yuwei
  email: 22451008@zju.edu.cn
  organization: Zhejiang University,State Key Lab of CAD&CG
– sequence: 5
  givenname: Jieyi
  surname: Chen
  fullname: Chen, Jieyi
  email: chenjieyi_juraws@zju.edu.cn
  organization: Zhejiang University,State Key Lab of CAD&CG
– sequence: 6
  givenname: Minfeng
  surname: Zhu
  fullname: Zhu, Minfeng
  email: minfeng_zhu@zju.edu.cn
  organization: Zhejiang University
– sequence: 7
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  email: chenvis@zju.edu.cn
  organization: Zhejiang University,State Key Lab of CAD&CG
BookMark eNotkMtOwzAURA0CiVL6Byws9in2dRw77KKKhkqVQFVB7Co_rsEoTas4rdS_JzxmM5s5ZzHX5KLdtUjIHWdTzll5_2JcDNG9xVTkAMUUGMgpGyLPyKRUpRaCSyY1F-dkBLyQmVZKXJFJSl8_szLnUhcj8vped2b_uarqB7poe-yM6-MR6SA-mIZWrWlOKSYadh39XWbWJPR0hX0X8WiarDp8bHEgPa2xHfg-7tobchlMk3Dy32Oynj-uZ0_Z8rlezKplFkvRZwA22Bw9k6DAKjBeaxeYEkUudQCPMjCnhAh5DhJZYNwG4Y0trNNeulKMye2fNiLiZt_FrelOm-Ef4Ewx8Q2ps1cF
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PacificVis64226.2025.00005
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331505813
EISSN 2165-8773
EndPage 11
ExternalDocumentID 11021070
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-22bfb4ed05272b72ad88cf0736458f2de5f0c733f4425e0f01bf3dab6bc8d5c93
IEDL.DBID RIE
IngestDate Wed Aug 27 01:43:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-22bfb4ed05272b72ad88cf0736458f2de5f0c733f4425e0f01bf3dab6bc8d5c93
PageCount 11
ParticipantIDs ieee_primary_11021070
PublicationCentury 2000
PublicationDate 2025-April-22
PublicationDateYYYYMMDD 2025-04-22
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-22
  day: 22
PublicationDecade 2020
PublicationTitle IEEE Pacific Visualization Symposium
PublicationTitleAbbrev PACIFICVIS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000941586
Score 2.2891617
Snippet Graph-based Retrieval-Augmented Generation (RAG) has shown great capability in enhancing Large Language Model (LLM)'s answer with an external knowledge base....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Data visualization
interactive visualization
Knowledge based systems
large language model
Large language models
Optimization
Pipelines
Prototypes
Real-time systems
Retrieval augmented generation
Retrieved-augmented generation
Usability
visual analysis
Visual analytics
Title XGraphRAG: Interactive Visual Analysis for Graph-based Retrieval-Augmented Generation
URI https://ieeexplore.ieee.org/document/11021070
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J734qvgmB69pd7PJbtZbEdsiWKS00ltJMokUpRXdvfjrTbK79QGCt2VJYMhMMsnMfN8gdKWMjWWWaMKEMoRZq4jMQRIA0ImSGZiQLrgfp6MZu5vzeQ1WD1gYY0woPjNd_xly-bDWpQ-V9WLfh9rZaAu1nJ1VYK1NQMW9U2Iu0ppYNI7yXl3W9rh8Tz1e1D0GKQ98hfxHK5XgSQa7aNzIUBWQPHfLQnX1xy96xn8LuYc6X6A9_LBxR_toy6wO0M43vsFDNJsPPT_1pD-8xiEUKMNph53spXzBDUEJdhdZHEYS7-QAT0LbLWeTpF8-BRZPwBVftVdrB00Ht9ObEan7KpBlnhSEUmUVMxBxmlGVUQlCaOu2esq4sBQMt5HOksQyt59NZKNY2QSkSpUWwHWeHKH2ar0yxwhLN9ndMPMI3GANRgiVUy2Ym0Ulg-wEdfwCLV4r5oxFszanf_w_Q9teST5bQ-k5ahdvpblwTr9Ql0HZn0EEryQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD-rFV8W3OXhN3c0mu1lvRWyrtkVKK72VJJNIUVrR3Yu_3iR9-ADB27IkMGSSzGRmvm8QulDGxjJLNGFCGcKsVUTmIAkA6ETJDExIF3S6aWvA7oZ8OAerByyMMSYUn5ma_wy5fJjq0ofKLmPfh9rt0VW05gw_4zO41jKk4l4qMRfpnFo0jvLLeWHb4_g99YhR9xykPDAW8h_NVIItaWyh7kKKWQnJc60sVE1__CJo_LeY26j6BdvDD0uDtINWzGQXbX5jHNxDg2HTM1T36s0rHIKBMtx32Mleyhe8oCjBzpXFYSTxZg5wLzTecruS1MunwOMJeMZY7RVbRf3GTf-6ReadFcg4TwpCqbKKGYg4zajKqAQhtHWHPWVcWAqG20hnSWKZO9EmslGsbAJSpUoL4DpP9lFlMp2YA4Slm-x8zDwCN1iDEULlVAvmZlHJIDtEVb9Ao9cZd8ZosTZHf_w_R-utfqc9at9274_RhleYz91QeoIqxVtpTp0LUKizoPhPmwGycQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Pacific+Visualization+Symposium&rft.atitle=XGraphRAG%3A+Interactive+Visual+Analysis+for+Graph-based+Retrieval-Augmented+Generation&rft.au=Wang%2C+Ke&rft.au=Pan%2C+Bo&rft.au=Feng%2C+Yingchaojie&rft.au=Wu%2C+Yuwei&rft.date=2025-04-22&rft.pub=IEEE&rft.eissn=2165-8773&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FPacificVis64226.2025.00005&rft.externalDocID=11021070