XGraphRAG: Interactive Visual Analysis for Graph-based Retrieval-Augmented Generation
Graph-based Retrieval-Augmented Generation (RAG) has shown great capability in enhancing Large Language Model (LLM)'s answer with an external knowledge base. Compared to traditional RAG, it introduces a graph as an intermediate representation to capture better structured relational knowledge in...
Saved in:
Published in | IEEE Pacific Visualization Symposium pp. 1 - 11 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
22.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2165-8773 |
DOI | 10.1109/PacificVis64226.2025.00005 |
Cover
Loading…
Abstract | Graph-based Retrieval-Augmented Generation (RAG) has shown great capability in enhancing Large Language Model (LLM)'s answer with an external knowledge base. Compared to traditional RAG, it introduces a graph as an intermediate representation to capture better structured relational knowledge in the corpus, elevating the precision and comprehensiveness of generation results. However, developers usually face challenges in analyzing the effectiveness of GraphRAG on their dataset due to GraphRAG's complex information processing pipeline and the overwhelming amount of LLM invocations involved during graph construction and query, which limits GraphRAG interpretability and accessibility. This research proposes a visual analysis framework that helps RAG developers identify critical recalls of GraphRAG and trace these recalls through the GraphRAG pipeline. Based on this framework, we develop XGraphRAG, a prototype system incorporating a set of interactive visualizations to facilitate users' analysis process, boosting failure cases collection and improvement opportunities identification. Our evaluation demonstrates the effectiveness and usability of our approach. Our work is open-sourced and available at https://github.com/Gk0Wk/XGraphRAG. |
---|---|
AbstractList | Graph-based Retrieval-Augmented Generation (RAG) has shown great capability in enhancing Large Language Model (LLM)'s answer with an external knowledge base. Compared to traditional RAG, it introduces a graph as an intermediate representation to capture better structured relational knowledge in the corpus, elevating the precision and comprehensiveness of generation results. However, developers usually face challenges in analyzing the effectiveness of GraphRAG on their dataset due to GraphRAG's complex information processing pipeline and the overwhelming amount of LLM invocations involved during graph construction and query, which limits GraphRAG interpretability and accessibility. This research proposes a visual analysis framework that helps RAG developers identify critical recalls of GraphRAG and trace these recalls through the GraphRAG pipeline. Based on this framework, we develop XGraphRAG, a prototype system incorporating a set of interactive visualizations to facilitate users' analysis process, boosting failure cases collection and improvement opportunities identification. Our evaluation demonstrates the effectiveness and usability of our approach. Our work is open-sourced and available at https://github.com/Gk0Wk/XGraphRAG. |
Author | Chen, Wei Feng, Yingchaojie Pan, Bo Wang, Ke Chen, Jieyi Wu, Yuwei Zhu, Minfeng |
Author_xml | – sequence: 1 givenname: Ke surname: Wang fullname: Wang, Ke email: sttotphd@zju.edu.cn organization: Zhejiang University,State Key Lab of CAD&CG – sequence: 2 givenname: Bo surname: Pan fullname: Pan, Bo email: bopan@zju.edu.cn organization: Zhejiang University,State Key Lab of CAD&CG – sequence: 3 givenname: Yingchaojie surname: Feng fullname: Feng, Yingchaojie email: fycj@zju.edu.cn organization: Zhejiang University,State Key Lab of CAD&CG – sequence: 4 givenname: Yuwei surname: Wu fullname: Wu, Yuwei email: 22451008@zju.edu.cn organization: Zhejiang University,State Key Lab of CAD&CG – sequence: 5 givenname: Jieyi surname: Chen fullname: Chen, Jieyi email: chenjieyi_juraws@zju.edu.cn organization: Zhejiang University,State Key Lab of CAD&CG – sequence: 6 givenname: Minfeng surname: Zhu fullname: Zhu, Minfeng email: minfeng_zhu@zju.edu.cn organization: Zhejiang University – sequence: 7 givenname: Wei surname: Chen fullname: Chen, Wei email: chenvis@zju.edu.cn organization: Zhejiang University,State Key Lab of CAD&CG |
BookMark | eNotkMtOwzAURA0CiVL6Byws9in2dRw77KKKhkqVQFVB7Co_rsEoTas4rdS_JzxmM5s5ZzHX5KLdtUjIHWdTzll5_2JcDNG9xVTkAMUUGMgpGyLPyKRUpRaCSyY1F-dkBLyQmVZKXJFJSl8_szLnUhcj8vped2b_uarqB7poe-yM6-MR6SA-mIZWrWlOKSYadh39XWbWJPR0hX0X8WiarDp8bHEgPa2xHfg-7tobchlMk3Dy32Oynj-uZ0_Z8rlezKplFkvRZwA22Bw9k6DAKjBeaxeYEkUudQCPMjCnhAh5DhJZYNwG4Y0trNNeulKMye2fNiLiZt_FrelOm-Ef4Ewx8Q2ps1cF |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/PacificVis64226.2025.00005 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798331505813 |
EISSN | 2165-8773 |
EndPage | 11 |
ExternalDocumentID | 11021070 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities funderid: 10.13039/501100012226 |
GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-22bfb4ed05272b72ad88cf0736458f2de5f0c733f4425e0f01bf3dab6bc8d5c93 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:43:03 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-22bfb4ed05272b72ad88cf0736458f2de5f0c733f4425e0f01bf3dab6bc8d5c93 |
PageCount | 11 |
ParticipantIDs | ieee_primary_11021070 |
PublicationCentury | 2000 |
PublicationDate | 2025-April-22 |
PublicationDateYYYYMMDD | 2025-04-22 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | IEEE Pacific Visualization Symposium |
PublicationTitleAbbrev | PACIFICVIS |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000941586 |
Score | 2.2891617 |
Snippet | Graph-based Retrieval-Augmented Generation (RAG) has shown great capability in enhancing Large Language Model (LLM)'s answer with an external knowledge base.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Data visualization interactive visualization Knowledge based systems large language model Large language models Optimization Pipelines Prototypes Real-time systems Retrieval augmented generation Retrieved-augmented generation Usability visual analysis Visual analytics |
Title | XGraphRAG: Interactive Visual Analysis for Graph-based Retrieval-Augmented Generation |
URI | https://ieeexplore.ieee.org/document/11021070 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J734qvgmB69pd7PJbtZbEdsiWKS00ltJMokUpRXdvfjrTbK79QGCt2VJYMhMMsnMfN8gdKWMjWWWaMKEMoRZq4jMQRIA0ImSGZiQLrgfp6MZu5vzeQ1WD1gYY0woPjNd_xly-bDWpQ-V9WLfh9rZaAu1nJ1VYK1NQMW9U2Iu0ppYNI7yXl3W9rh8Tz1e1D0GKQ98hfxHK5XgSQa7aNzIUBWQPHfLQnX1xy96xn8LuYc6X6A9_LBxR_toy6wO0M43vsFDNJsPPT_1pD-8xiEUKMNph53spXzBDUEJdhdZHEYS7-QAT0LbLWeTpF8-BRZPwBVftVdrB00Ht9ObEan7KpBlnhSEUmUVMxBxmlGVUQlCaOu2esq4sBQMt5HOksQyt59NZKNY2QSkSpUWwHWeHKH2ar0yxwhLN9ndMPMI3GANRgiVUy2Ym0Ulg-wEdfwCLV4r5oxFszanf_w_Q9teST5bQ-k5ahdvpblwTr9Ql0HZn0EEryQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD-rFV8W3OXhN3c0mu1lvRWyrtkVKK72VJJNIUVrR3Yu_3iR9-ADB27IkMGSSzGRmvm8QulDGxjJLNGFCGcKsVUTmIAkA6ETJDExIF3S6aWvA7oZ8OAerByyMMSYUn5ma_wy5fJjq0ofKLmPfh9rt0VW05gw_4zO41jKk4l4qMRfpnFo0jvLLeWHb4_g99YhR9xykPDAW8h_NVIItaWyh7kKKWQnJc60sVE1__CJo_LeY26j6BdvDD0uDtINWzGQXbX5jHNxDg2HTM1T36s0rHIKBMtx32Mleyhe8oCjBzpXFYSTxZg5wLzTecruS1MunwOMJeMZY7RVbRf3GTf-6ReadFcg4TwpCqbKKGYg4zajKqAQhtHWHPWVcWAqG20hnSWKZO9EmslGsbAJSpUoL4DpP9lFlMp2YA4Slm-x8zDwCN1iDEULlVAvmZlHJIDtEVb9Ao9cZd8ZosTZHf_w_R-utfqc9at9274_RhleYz91QeoIqxVtpTp0LUKizoPhPmwGycQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Pacific+Visualization+Symposium&rft.atitle=XGraphRAG%3A+Interactive+Visual+Analysis+for+Graph-based+Retrieval-Augmented+Generation&rft.au=Wang%2C+Ke&rft.au=Pan%2C+Bo&rft.au=Feng%2C+Yingchaojie&rft.au=Wu%2C+Yuwei&rft.date=2025-04-22&rft.pub=IEEE&rft.eissn=2165-8773&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FPacificVis64226.2025.00005&rft.externalDocID=11021070 |