Optimized Energy Storage Integration for Enhancing Grid Stability under High Photovoltaic Penetration Scenarios

The integration of photovoltaic (PV) generation into electrical grids presents significant technical challenges due to its intermittent and unpredictable nature. With aggressive renewable energy targets, power system operators face increased risks to voltage stability, transient stability, and frequ...

Full description

Saved in:
Bibliographic Details
Published inConference record of the Industry Applications Conference pp. 1 - 8
Main Author Kuo, Ming-Tse
Format Conference Proceeding
LanguageEnglish
Published IEEE 15.06.2025
Subjects
Online AccessGet full text
ISSN2576-702X
DOI10.1109/IAS62731.2025.11061737

Cover

Abstract The integration of photovoltaic (PV) generation into electrical grids presents significant technical challenges due to its intermittent and unpredictable nature. With aggressive renewable energy targets, power system operators face increased risks to voltage stability, transient stability, and frequency stability. This paper analyzes the impact of large-scale PV integration on power system reliability and proposes optimized solutions involving battery energy storage systems (BESS). The study specifically investigates scenarios reflecting high PV penetration levels planned for 2025, simulating real-world disturbances including sudden PV outages, abrupt drops in PV power generation, and combined cycle generator outages under critical conditions. Comprehensive transient simulations conducted using industry-standard software reveal that without proper mitigation strategies, high PV penetration significantly degrades frequency stability, particularly during low-inertia scenarios in winter months. To address these issues, this research applies nonlinear multi-objective optimization techniques, utilizing the NSGA-II algorithm, to identify optimal configurations of energy storage capacities and operational strategies. The findings demonstrate that strategically sized and located BESS effectively enhance grid stability, minimize frequency excursions, and reduce the risk of load shedding. Compared to existing literature, this paper provides detailed operational insights, simulation-based evidence, and clear guidance for practically implementing energy storage solutions within high renewable penetration scenarios. The proposed methodology serves as a robust framework for utilities and grid operators aiming to reliably integrate renewable generation.
AbstractList The integration of photovoltaic (PV) generation into electrical grids presents significant technical challenges due to its intermittent and unpredictable nature. With aggressive renewable energy targets, power system operators face increased risks to voltage stability, transient stability, and frequency stability. This paper analyzes the impact of large-scale PV integration on power system reliability and proposes optimized solutions involving battery energy storage systems (BESS). The study specifically investigates scenarios reflecting high PV penetration levels planned for 2025, simulating real-world disturbances including sudden PV outages, abrupt drops in PV power generation, and combined cycle generator outages under critical conditions. Comprehensive transient simulations conducted using industry-standard software reveal that without proper mitigation strategies, high PV penetration significantly degrades frequency stability, particularly during low-inertia scenarios in winter months. To address these issues, this research applies nonlinear multi-objective optimization techniques, utilizing the NSGA-II algorithm, to identify optimal configurations of energy storage capacities and operational strategies. The findings demonstrate that strategically sized and located BESS effectively enhance grid stability, minimize frequency excursions, and reduce the risk of load shedding. Compared to existing literature, this paper provides detailed operational insights, simulation-based evidence, and clear guidance for practically implementing energy storage solutions within high renewable penetration scenarios. The proposed methodology serves as a robust framework for utilities and grid operators aiming to reliably integrate renewable generation.
Author Kuo, Ming-Tse
Author_xml – sequence: 1
  givenname: Ming-Tse
  surname: Kuo
  fullname: Kuo, Ming-Tse
  email: mkuo@mail.ntust.edu.tw
  organization: National Taiwan University of Science and Technology,Department of Electrical Engineering,Taipei City,Taiwan, R.O.C
BookMark eNo1kM1qAjEUhdPSQtX6BqXkBcbmZyZ3shSxKggKuuhOYnJnTNFEMmnBPn0tbVcHzvn4FqdP7kIMSMgzZyPOmX5ZjDdKgOQjwUT1UykOEm7IUEPNlarKCkDBLemJClQBTLw9kH7XvTPGZK14j8TVOfuT_0JHpwFTe6GbHJNpkS5CxjaZ7GOgTUzX-WCC9aGls-TdFTN7f_T5Qj-Cw0Tnvj3Q9SHm-BmP2XhL1xgw_wk2FoNJPnaP5L4xxw6Hfzkg29fpdjIvlqvZYjJeFl7LXHDVYC32lmldQdk0leRCY8ksIBrQQglhtJa8LFEo2wA6Z4UDVWPJLYCTA_L0q_WIuDsnfzLpsvv_R34DUMJeMQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IAS62731.2025.11061737
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665457767
1665457767
EISSN 2576-702X
EndPage 8
ExternalDocumentID 11061737
Genre orig-research
GrantInformation_xml – fundername: National Science and Technology Council
  funderid: 10.13039/501100020950
GroupedDBID 6IE
6IF
6IH
6IK
6IM
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIO
RNS
ID FETCH-LOGICAL-i93t-16fe82bc099574ff53129e40c7eea792622a993144e26cf7eddc2d768e41c77d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:14:04 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-16fe82bc099574ff53129e40c7eea792622a993144e26cf7eddc2d768e41c77d3
PageCount 8
ParticipantIDs ieee_primary_11061737
PublicationCentury 2000
PublicationDate 2025-June-15
PublicationDateYYYYMMDD 2025-06-15
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-15
  day: 15
PublicationDecade 2020
PublicationTitle Conference record of the Industry Applications Conference
PublicationTitleAbbrev IAS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003861
Score 2.2947688
Snippet The integration of photovoltaic (PV) generation into electrical grids presents significant technical challenges due to its intermittent and unpredictable...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Battery energy storage system
Battery energy storage systems (BESS)
Frequency stability
Index Terms--Photovoltaic integration
Multi-objective optimization
Photovoltaic systems
Power system dynamics
Power system reliability
Power system stability
Regulation
Reliability
Renewable energy sources
Stability criteria
Transient analysis
Title Optimized Energy Storage Integration for Enhancing Grid Stability under High Photovoltaic Penetration Scenarios
URI https://ieeexplore.ieee.org/document/11061737
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVoT3BhK2KXD1yT1rETJ0eEWlokSqUWqbcqscc0QiRVSQ_06xknaVkkJG5RFjmy45n3nHnPhNwYyROQCc5vY7gjhC-dGLOSA5rHHYaUSxq73vE4DPrP4mHqT2uxeqmFAYCy-Axce1j-y9e5Wtmlsjaz_EVy2SAN_M4qsdY27PIwYLUEmHWi9uB2HGBqthTQ893Nkz_2UClTSG-fDDeNV5Ujr-6qSFy1_uXL-O-3OyCtL7UeHW3z0CHZgeyI7H0zGjwm-RNGhrd0DZp2S7EfHSPXxlBCB7VdBA4PRfyKl-fWgSN7offLVONtlY_3B7VisyW1ZSF0NM-LHMNaEaeKjjBY1ta7dKwgQ-6dv7fIpNed3PWdeqsFJ4144bDAQOglCuGiL4UxODG9CERHSYBYWktBL0Ygg-QLvEAZCVorTyNTAcGUlJqfkGaWZ3BKaBgihFKSsSBSArgIg5DHCeIIbCEJNTsjLdt1s0VlpjHb9Nr5H-cvyK4dQVudxfxL0iyWK7hCHFAk1-X4fwIprrOB
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHIALWxE7PnBNqGMnTo4ItbTQlkotUm9VYk9ohEhQSQ_06xknaVkkJG5RFjmy45n3nHnPhFzFkkcgI5zfccwtIVxphZiVLNA8bDCkXDI26x29vtd-Evdjd1yJ1QstDAAUxWdgm8PiX77O1NwslV0zw18kl-tkAxO_cEu51irwct9jlQiYNYLrzs3Qw-RsSKDj2stnf-yiUiSR1g7pL5sva0de7Hke2Wrxy5nx3--3S-pfej06WGWiPbIG6T7Z_mY1eECyR4wNr8kCNG0Wcj86RLaNwYR2KsMIHCCKCBYvT40HR_pM72aJxttKJ-8PauRmM2oKQ-hgmuUZBrY8TBQdYLiszHfpUEGK7Dt7r5NRqzm6bVvVZgtWEvDcYl4MvhMpBIyuFHGMU9MJQDSUBAilMRV0QoQySL_A8VQsQWvlaOQqIJiSUvNDUkuzFI4I9X0EUUoy5gVKABe-5_MwQiSBLUS-Zsekbrpu8lbaaUyWvXbyx_lLstke9bqTbqf_cEq2zGiaWi3mnpFaPpvDOaKCPLoovoVPu5y2zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+record+of+the+Industry+Applications+Conference&rft.atitle=Optimized+Energy+Storage+Integration+for+Enhancing+Grid+Stability+under+High+Photovoltaic+Penetration+Scenarios&rft.au=Kuo%2C+Ming-Tse&rft.date=2025-06-15&rft.pub=IEEE&rft.eissn=2576-702X&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FIAS62731.2025.11061737&rft.externalDocID=11061737