Efficient Fine-Tuning of SAM for Interactive Medical Image Multi-Organ Segmentation

Recently, Segment Anything Model (SAM) has significantly advanced interactive segmentation techniques, particularly its fine-tuned variants in medical imaging. Although previous approaches can adapt SAM to diverse downstream tasks with additional data, two challenges persist. On the one hand, organ...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Symposium on Biomedical Imaging) pp. 01 - 05
Main Authors Wang, Mengxin, Liao, Linglin, Jiang, Na, Geng, Qichuan
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, Segment Anything Model (SAM) has significantly advanced interactive segmentation techniques, particularly its fine-tuned variants in medical imaging. Although previous approaches can adapt SAM to diverse downstream tasks with additional data, two challenges persist. On the one hand, organ ambiguities render SAM susceptible to human factor prompts, leading to unsatisfactory segmentation results. On the other hand, fine-tuning with massive data and the segment-single-region paradigm incur considerable computational and time costs. To this end, we propose to efficiently fine-tune SAM for interactive multi-organ medical segmentation by parallel heuristic prompt generation (PHPG) and class-balanced data pruning (CBDP). Specifically, PHPG generates prompts for diverse human behaviors guided by error prediction, effectively enhancing the consistency of prompts between training and testing. At the same time, it also offers a segment-multi-region paradigm to accelerate fine-tuning of SAM. Furthermore, considering that the contributions of training samples are dynamically variable and organ-related, CBDP is designed to reduce fine-tuning iterations. Experimental results on the FLARE and Synapse datasets indicate that the proposed method outperforms existing strategies. With only approximately 56.25% of the iterations, the segmentation performance is comparable to that of full fine-tuning, possessing better generalization ability and insensitivity to human factors.
AbstractList Recently, Segment Anything Model (SAM) has significantly advanced interactive segmentation techniques, particularly its fine-tuned variants in medical imaging. Although previous approaches can adapt SAM to diverse downstream tasks with additional data, two challenges persist. On the one hand, organ ambiguities render SAM susceptible to human factor prompts, leading to unsatisfactory segmentation results. On the other hand, fine-tuning with massive data and the segment-single-region paradigm incur considerable computational and time costs. To this end, we propose to efficiently fine-tune SAM for interactive multi-organ medical segmentation by parallel heuristic prompt generation (PHPG) and class-balanced data pruning (CBDP). Specifically, PHPG generates prompts for diverse human behaviors guided by error prediction, effectively enhancing the consistency of prompts between training and testing. At the same time, it also offers a segment-multi-region paradigm to accelerate fine-tuning of SAM. Furthermore, considering that the contributions of training samples are dynamically variable and organ-related, CBDP is designed to reduce fine-tuning iterations. Experimental results on the FLARE and Synapse datasets indicate that the proposed method outperforms existing strategies. With only approximately 56.25% of the iterations, the segmentation performance is comparable to that of full fine-tuning, possessing better generalization ability and insensitivity to human factors.
Author Geng, Qichuan
Liao, Linglin
Wang, Mengxin
Jiang, Na
Author_xml – sequence: 1
  givenname: Mengxin
  surname: Wang
  fullname: Wang, Mengxin
  organization: Capital Normal University,Beijing,China
– sequence: 2
  givenname: Linglin
  surname: Liao
  fullname: Liao, Linglin
  organization: Capital Normal University,Beijing,China
– sequence: 3
  givenname: Na
  surname: Jiang
  fullname: Jiang, Na
  organization: Capital Normal University,Beijing,China
– sequence: 4
  givenname: Qichuan
  surname: Geng
  fullname: Geng, Qichuan
  email: 6915@cnu.edu.cn
  organization: Capital Normal University,Beijing,China
BookMark eNo1kM1KAzEcxKMoWGvfQDAvsGu-NznW0upCSw_be0mTf5ZINyu7qeDbu2CdyzA_hjnMI7pLfQKEXigpKSXmtW7eakWkpiUjTJYT0pRocYMWpjKacyoZkUzdohk1QhZaSPaAFuP4SSZVQnAiZqhZhxBdhJTxJiYoDpcUU4v7gJvlDod-wHXKMFiX4zfgHfjo7BnXnW2ndDnnWOyH1ibcQNtNIzbHPj2h-2DPIyyuPkeHzfqw-ii2-_d6tdwW0fBcUKEJ97ISJ0GoJZVX3lHHvWIyeHdibAIKnKqcMI6aoLytTsxQNfWZ5sDn6PlvNgLA8WuInR1-jv838F_rH1MD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI60581.2025.10981084
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331520526
EISSN 1945-8452
EndPage 05
ExternalDocumentID 10981084
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62206184
  funderid: 10.13039/501100001809
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i93t-14803d574b401a07d6dc1c3d625fdcb22d6d6ec67c49c19f6da7b2916b40283e3
IEDL.DBID RIE
IngestDate Wed Aug 27 01:53:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-14803d574b401a07d6dc1c3d625fdcb22d6d6ec67c49c19f6da7b2916b40283e3
PageCount 5
ParticipantIDs ieee_primary_10981084
PublicationCentury 2000
PublicationDate 2025-April-14
PublicationDateYYYYMMDD 2025-04-14
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-14
  day: 14
PublicationDecade 2020
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.2886329
Snippet Recently, Segment Anything Model (SAM) has significantly advanced interactive segmentation techniques, particularly its fine-tuned variants in medical imaging....
SourceID ieee
SourceType Publisher
StartPage 01
SubjectTerms Biological systems
Biomedical imaging
Costs
Data models
Data pruning
Fine-tuning of SAM
Hands
Human factors
Image segmentation
Interactive medical image segmentation
Synapses
Testing
Training
Title Efficient Fine-Tuning of SAM for Interactive Medical Image Multi-Organ Segmentation
URI https://ieeexplore.ieee.org/document/10981084
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8MwDBZrT9tlr4698WFXZ3HiOMlxGy3toGWQDnorfmWM0bSM5LJfP9lNuwcMdjPCBmNjS5-kTwK4yYzKZawYVWViKLepoDLXikrBMiW51Mz3IhhPxPCZP86SWUtW91wYa61PPrOBG_pYvlnqxrnK8IXnGQsz3oEOIrc1WWvrUEFdyBGbtzlcOPV2VNyPXNTPwcAoCTarf_RR8WpksA-TzQbW2SNvQVOrQH_8qs347x0eQO-LsUeetrroEHZsdQR734oNHkPR99UicD0ZoJROG-cSIcuSFHdjgrYr8d5B6T9A0gZwyGiBHw7xNF3qeZuksC-LlrBU9WA66E8fhrRtqUBf87imiH3C2CQpVwirZJgaYTTTsUEQVBqtoggFwmqRap5rlpfCyFRFaEHifLRDbHwC3WpZ2VMgxnJ87ywuJUcEV4rchlq4yjciRbNB6jPoueOZr9ZFM-abkzn_Q34Bu-6WXKCG8Uvo1u-NvUJ9X6trf8-fLHapWA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66HtSLrxXf5uA1tWnTtD2q7LLV3UVohb0teVVEtivSXvz1TrLd9QGCtzAkEBKSmW9mvhmErhItUxFKSmQZacJMzIlIlSSC00QKJhR1vQhGYz54YveTaNKS1R0Xxhjjks-MZ4culq_nqrGuMnjhaUL9hK2jDVD8EV3QtVYuFdCGDNB5m8UFk6-z_DazcT8LBIPIW67_0UnFKZL-Dhovt7DIH3n1mlp66uNXdcZ_73EXdb84e_hxpY320Jqp9tH2t3KDByjvuXoRsB73QUqKxjpF8LzE-c0Ig_WKnX9QuC8QtyEcnM3gy8GOqEsccxPn5nnWUpaqLir6veJuQNqmCuQlDWsC6McPdRQzCcBK-LHmWlEVaoBBpVYyCEDAjeKxYqmiacm1iGUANiTMB0vEhIeoU80rc4SwNgxePA1LwQDDlTw1vuK29g2PwXAQ6hh17fFM3xZlM6bLkzn5Q36JNgfFaDgdZuOHU7Rlb8yGbSg7Q536vTHnoP1reeHu_BM1Iayh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Efficient+Fine-Tuning+of+SAM+for+Interactive+Medical+Image+Multi-Organ+Segmentation&rft.au=Wang%2C+Mengxin&rft.au=Liao%2C+Linglin&rft.au=Jiang%2C+Na&rft.au=Geng%2C+Qichuan&rft.date=2025-04-14&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=01&rft.epage=05&rft_id=info:doi/10.1109%2FISBI60581.2025.10981084&rft.externalDocID=10981084