Humanoid Control Technology for Lower Limb Rehabilitation Robots Based on Human Gait Data
The lower limb rehabilitation robot is a wearable exoskeleton bionic device that integrates robotic features with human walking characteristics. This paper explores the control strategies, gait data acquisition and processing methods, as well as the design and experimental validation of a humanoid c...
Saved in:
Published in | International Conference on Advanced Mechatronic Systems pp. 171 - 176 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
26.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2325-0690 |
DOI | 10.1109/ICAMechS63130.2024.10818727 |
Cover
Loading…
Abstract | The lower limb rehabilitation robot is a wearable exoskeleton bionic device that integrates robotic features with human walking characteristics. This paper explores the control strategies, gait data acquisition and processing methods, as well as the design and experimental validation of a humanoid control system for lower limb rehabilitation robots. By collecting gait data from healthy individuals using the NOKOV 3D infrared passive optical motion capture system, a gait dataset was established, and methods such as spline interpolation and Gaussian regression were employed to integrate the gait data. A humanoid control system based on real gait data was designed, utilizing a high-performance computer, R4SE controller, and joint motors to simulate gait patterns. Experimental results demonstrate that the system effectively follows target gait trajectories, achieving high trajectory tracking accuracy and smoothness, ensuring the safety and effectiveness of rehabilitation training. Future research will incorporate a more diverse group of subjects and intelligent control algorithms to enhance the system's adaptability and intelligence. |
---|---|
AbstractList | The lower limb rehabilitation robot is a wearable exoskeleton bionic device that integrates robotic features with human walking characteristics. This paper explores the control strategies, gait data acquisition and processing methods, as well as the design and experimental validation of a humanoid control system for lower limb rehabilitation robots. By collecting gait data from healthy individuals using the NOKOV 3D infrared passive optical motion capture system, a gait dataset was established, and methods such as spline interpolation and Gaussian regression were employed to integrate the gait data. A humanoid control system based on real gait data was designed, utilizing a high-performance computer, R4SE controller, and joint motors to simulate gait patterns. Experimental results demonstrate that the system effectively follows target gait trajectories, achieving high trajectory tracking accuracy and smoothness, ensuring the safety and effectiveness of rehabilitation training. Future research will incorporate a more diverse group of subjects and intelligent control algorithms to enhance the system's adaptability and intelligence. |
Author | Gao, Shengda Yue, Xuebing Wang, Aihui Li, Hengyi Duan, Huichao Dong, Jinkang |
Author_xml | – sequence: 1 givenname: Shengda surname: Gao fullname: Gao, Shengda organization: Zhongyuan University of Technology,School of Automation and Electrical Engineering,Zhengzhou,China,450007 – sequence: 2 givenname: Aihui surname: Wang fullname: Wang, Aihui organization: Zhongyuan University of Technology,School of Automation and Electrical Engineering,Zhengzhou,China,450007 – sequence: 3 givenname: Huichao surname: Duan fullname: Duan, Huichao organization: Zhongyuan University of Technology,School of Automation and Electrical Engineering,Zhengzhou,China,450007 – sequence: 4 givenname: Xuebing surname: Yue fullname: Yue, Xuebing organization: Zhongyuan University of Technology,School of Automation and Electrical Engineering,Zhengzhou,China,450007 – sequence: 5 givenname: Hengyi surname: Li fullname: Li, Hengyi email: shengdagao@zut.edu.cn organization: Zhongyuan University of Technology,School of Automation and Electrical Engineering,Zhengzhou,China,450007 – sequence: 6 givenname: Jinkang surname: Dong fullname: Dong, Jinkang email: a.wang@zut.edu.cn organization: Zhongyuan University of Technology,School of Automation and Electrical Engineering,Zhengzhou,China,450007 |
BookMark | eNo1kMtOwzAURA0CiVLyBywssU64105u7CWU0iIVIZVuWFV24lCjNEaJEerfE16bGZ3N0WjO2UkXOsfYFUKGCPr6YXbz6KrdM0mUkAkQeYagUJWiPGKJLrWSBUgiAfkxmwgpihRIwxlLhuENAFAXoBRM2MvyY2-64Gs-C13sQ8s3o7cLbXg98Cb0fBU-3Zh-b_na7Yz1rY8m-tDxdbAhDvzWDK7mI_-Y-ML4yO9MNBfstDHt4JK_nrLN_XwzW6arp8U4f5V6jTFtjFPW5FiQRiqJqtJRY6zVqPJvtqKuEGxJlRKNVg0aS5qotq6qSGEhp-zyV-udc9v33u9Nf9j-nyG_AGOtVz8 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICAMechS63130.2024.10818727 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350366204 |
EISSN | 2325-0690 |
EndPage | 176 |
ExternalDocumentID | 10818727 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i91t-fae8ba4156916766c7e6fabb91846766b2dc10b76c82f98f1ab6966dbecc68153 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 22 08:32:25 EST 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-fae8ba4156916766c7e6fabb91846766b2dc10b76c82f98f1ab6966dbecc68153 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10818727 |
PublicationCentury | 2000 |
PublicationDate | 2024-Nov.-26 |
PublicationDateYYYYMMDD | 2024-11-26 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov.-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Advanced Mechatronic Systems |
PublicationTitleAbbrev | ICAMechS |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001950880 |
Score | 1.893331 |
Snippet | The lower limb rehabilitation robot is a wearable exoskeleton bionic device that integrates robotic features with human walking characteristics. This paper... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 171 |
SubjectTerms | Assistive robots Control systems gait fusion humanoid control system Humanoid robots Legged locomotion Limbs lower-limb rehabilitation robot Machine learning algorithms Safety Training Trajectory Trajectory tracking |
Title | Humanoid Control Technology for Lower Limb Rehabilitation Robots Based on Human Gait Data |
URI | https://ieeexplore.ieee.org/document/10818727 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60B9GLr4pvFvSa2KTJJDlqtVapRWqFeir7xCA2ounFX-_sprVWELwlOSzLDjvfN5OZbwBO4zSNeaZiT8bGeOT9lCfCkJwhRjoLtLS0w1Zb9LDzGN0O4-G0Wd31wmitXfGZ9u2j-5evCjmxqTK64QQvBLjLsEyRW9WsNU-ouHmmjRU4mepont20zu-0fH7AJjlqCgXDyJ-tsDBLxUFJex16s01UFSQv_qQUvvz8pc_4711uQH3etcfuv_FoE5b0eAvWfggObsOTy9kXuWKtqkSdzVPrjOgr69qhaaybvwrWX9DwZv1CFOUHuyDUU4ze3Ursmuclu-Qlr8OgfTVodbzpcAUvz4LSM1yngtvojfhhgigTjYYLkQWWkCCKUMmgIRKUaWiy1ARcIEVGypocU3KTO1AbF2O9CywOTTMSRgUJZlEsMy440UodNRTHJqZqD-r2kEZvlXzGaHY--398P4BVayvb8BfiIdTK94k-IuQvxbGz-BeJAq05 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60go-Lr4pvF_Sa2KTJJnvUam01LVIr1FPZJwaxEU0v_npnk9ZaQfCW5LAsO-x830xmvgE4C-M45EyFjgyNcdD7KUf4PjpDGmjmaWlph6226NLWY3A7CAeTZvWiF0ZrXRSfadc-Fv_yVSbHNlWGNxzhBQF3EZYQ-ANWtmvNUirFRNPaMpxOlDTP242LjpbPD7SOrhqDQT9wp2vMTVMpwKS5Dt3pNsoakhd3nAtXfv5SaPz3PjegOuvbI_ffiLQJC3q0BWs_JAe34anI2mepIo2ySJ3MkusECSxJ7Ng0kqSvgvTmVLxJLxNZ_kEuEfcUwfdiJXLD05xc8ZxXod-87jdazmS8gpMyL3cM17HgNn5DhhhRKiNNDReCeZaSUCp8Jb2aiKiMfcNi43FBMTZS1ug0Rke5A5VRNtK7QELf1ANhlBdRFoSSccGRWOqgpjit01jtQdUe0vCtFNAYTs9n_4_vJ7DS6neSYdLu3h3AqrWbbf_z6SFU8vexPkIekIvjwvpf0AmwiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Advanced+Mechatronic+Systems&rft.atitle=Humanoid+Control+Technology+for+Lower+Limb+Rehabilitation+Robots+Based+on+Human+Gait+Data&rft.au=Gao%2C+Shengda&rft.au=Wang%2C+Aihui&rft.au=Duan%2C+Huichao&rft.au=Yue%2C+Xuebing&rft.date=2024-11-26&rft.pub=IEEE&rft.eissn=2325-0690&rft.spage=171&rft.epage=176&rft_id=info:doi/10.1109%2FICAMechS63130.2024.10818727&rft.externalDocID=10818727 |