Humanoid Control Technology for Lower Limb Rehabilitation Robots Based on Human Gait Data

The lower limb rehabilitation robot is a wearable exoskeleton bionic device that integrates robotic features with human walking characteristics. This paper explores the control strategies, gait data acquisition and processing methods, as well as the design and experimental validation of a humanoid c...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Advanced Mechatronic Systems pp. 171 - 176
Main Authors Gao, Shengda, Wang, Aihui, Duan, Huichao, Yue, Xuebing, Li, Hengyi, Dong, Jinkang
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.11.2024
Subjects
Online AccessGet full text
ISSN2325-0690
DOI10.1109/ICAMechS63130.2024.10818727

Cover

Loading…
Abstract The lower limb rehabilitation robot is a wearable exoskeleton bionic device that integrates robotic features with human walking characteristics. This paper explores the control strategies, gait data acquisition and processing methods, as well as the design and experimental validation of a humanoid control system for lower limb rehabilitation robots. By collecting gait data from healthy individuals using the NOKOV 3D infrared passive optical motion capture system, a gait dataset was established, and methods such as spline interpolation and Gaussian regression were employed to integrate the gait data. A humanoid control system based on real gait data was designed, utilizing a high-performance computer, R4SE controller, and joint motors to simulate gait patterns. Experimental results demonstrate that the system effectively follows target gait trajectories, achieving high trajectory tracking accuracy and smoothness, ensuring the safety and effectiveness of rehabilitation training. Future research will incorporate a more diverse group of subjects and intelligent control algorithms to enhance the system's adaptability and intelligence.
AbstractList The lower limb rehabilitation robot is a wearable exoskeleton bionic device that integrates robotic features with human walking characteristics. This paper explores the control strategies, gait data acquisition and processing methods, as well as the design and experimental validation of a humanoid control system for lower limb rehabilitation robots. By collecting gait data from healthy individuals using the NOKOV 3D infrared passive optical motion capture system, a gait dataset was established, and methods such as spline interpolation and Gaussian regression were employed to integrate the gait data. A humanoid control system based on real gait data was designed, utilizing a high-performance computer, R4SE controller, and joint motors to simulate gait patterns. Experimental results demonstrate that the system effectively follows target gait trajectories, achieving high trajectory tracking accuracy and smoothness, ensuring the safety and effectiveness of rehabilitation training. Future research will incorporate a more diverse group of subjects and intelligent control algorithms to enhance the system's adaptability and intelligence.
Author Gao, Shengda
Yue, Xuebing
Wang, Aihui
Li, Hengyi
Duan, Huichao
Dong, Jinkang
Author_xml – sequence: 1
  givenname: Shengda
  surname: Gao
  fullname: Gao, Shengda
  organization: Zhongyuan University of Technology,School of Automation and Electrical Engineering,Zhengzhou,China,450007
– sequence: 2
  givenname: Aihui
  surname: Wang
  fullname: Wang, Aihui
  organization: Zhongyuan University of Technology,School of Automation and Electrical Engineering,Zhengzhou,China,450007
– sequence: 3
  givenname: Huichao
  surname: Duan
  fullname: Duan, Huichao
  organization: Zhongyuan University of Technology,School of Automation and Electrical Engineering,Zhengzhou,China,450007
– sequence: 4
  givenname: Xuebing
  surname: Yue
  fullname: Yue, Xuebing
  organization: Zhongyuan University of Technology,School of Automation and Electrical Engineering,Zhengzhou,China,450007
– sequence: 5
  givenname: Hengyi
  surname: Li
  fullname: Li, Hengyi
  email: shengdagao@zut.edu.cn
  organization: Zhongyuan University of Technology,School of Automation and Electrical Engineering,Zhengzhou,China,450007
– sequence: 6
  givenname: Jinkang
  surname: Dong
  fullname: Dong, Jinkang
  email: a.wang@zut.edu.cn
  organization: Zhongyuan University of Technology,School of Automation and Electrical Engineering,Zhengzhou,China,450007
BookMark eNo1kMtOwzAURA0CiVLyBywssU64105u7CWU0iIVIZVuWFV24lCjNEaJEerfE16bGZ3N0WjO2UkXOsfYFUKGCPr6YXbz6KrdM0mUkAkQeYagUJWiPGKJLrWSBUgiAfkxmwgpihRIwxlLhuENAFAXoBRM2MvyY2-64Gs-C13sQ8s3o7cLbXg98Cb0fBU-3Zh-b_na7Yz1rY8m-tDxdbAhDvzWDK7mI_-Y-ML4yO9MNBfstDHt4JK_nrLN_XwzW6arp8U4f5V6jTFtjFPW5FiQRiqJqtJRY6zVqPJvtqKuEGxJlRKNVg0aS5qotq6qSGEhp-zyV-udc9v33u9Nf9j-nyG_AGOtVz8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAMechS63130.2024.10818727
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350366204
EISSN 2325-0690
EndPage 176
ExternalDocumentID 10818727
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i91t-fae8ba4156916766c7e6fabb91846766b2dc10b76c82f98f1ab6966dbecc68153
IEDL.DBID RIE
IngestDate Wed Jan 22 08:32:25 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-fae8ba4156916766c7e6fabb91846766b2dc10b76c82f98f1ab6966dbecc68153
PageCount 6
ParticipantIDs ieee_primary_10818727
PublicationCentury 2000
PublicationDate 2024-Nov.-26
PublicationDateYYYYMMDD 2024-11-26
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-Nov.-26
  day: 26
PublicationDecade 2020
PublicationTitle International Conference on Advanced Mechatronic Systems
PublicationTitleAbbrev ICAMechS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001950880
Score 1.893331
Snippet The lower limb rehabilitation robot is a wearable exoskeleton bionic device that integrates robotic features with human walking characteristics. This paper...
SourceID ieee
SourceType Publisher
StartPage 171
SubjectTerms Assistive robots
Control systems
gait fusion
humanoid control system
Humanoid robots
Legged locomotion
Limbs
lower-limb rehabilitation robot
Machine learning algorithms
Safety
Training
Trajectory
Trajectory tracking
Title Humanoid Control Technology for Lower Limb Rehabilitation Robots Based on Human Gait Data
URI https://ieeexplore.ieee.org/document/10818727
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60B9GLr4pvFvSa2KTJJDlqtVapRWqFeir7xCA2ounFX-_sprVWELwlOSzLDjvfN5OZbwBO4zSNeaZiT8bGeOT9lCfCkJwhRjoLtLS0w1Zb9LDzGN0O4-G0Wd31wmitXfGZ9u2j-5evCjmxqTK64QQvBLjLsEyRW9WsNU-ouHmmjRU4mepont20zu-0fH7AJjlqCgXDyJ-tsDBLxUFJex16s01UFSQv_qQUvvz8pc_4711uQH3etcfuv_FoE5b0eAvWfggObsOTy9kXuWKtqkSdzVPrjOgr69qhaaybvwrWX9DwZv1CFOUHuyDUU4ze3Ursmuclu-Qlr8OgfTVodbzpcAUvz4LSM1yngtvojfhhgigTjYYLkQWWkCCKUMmgIRKUaWiy1ARcIEVGypocU3KTO1AbF2O9CywOTTMSRgUJZlEsMy440UodNRTHJqZqD-r2kEZvlXzGaHY--398P4BVayvb8BfiIdTK94k-IuQvxbGz-BeJAq05
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60go-Lr4pvF_Sa2KTJJnvUam01LVIr1FPZJwaxEU0v_npnk9ZaQfCW5LAsO-x830xmvgE4C-M45EyFjgyNcdD7KUf4PjpDGmjmaWlph6226NLWY3A7CAeTZvWiF0ZrXRSfadc-Fv_yVSbHNlWGNxzhBQF3EZYQ-ANWtmvNUirFRNPaMpxOlDTP242LjpbPD7SOrhqDQT9wp2vMTVMpwKS5Dt3pNsoakhd3nAtXfv5SaPz3PjegOuvbI_ffiLQJC3q0BWs_JAe34anI2mepIo2ySJ3MkusECSxJ7Ng0kqSvgvTmVLxJLxNZ_kEuEfcUwfdiJXLD05xc8ZxXod-87jdazmS8gpMyL3cM17HgNn5DhhhRKiNNDReCeZaSUCp8Jb2aiKiMfcNi43FBMTZS1ug0Rke5A5VRNtK7QELf1ANhlBdRFoSSccGRWOqgpjit01jtQdUe0vCtFNAYTs9n_4_vJ7DS6neSYdLu3h3AqrWbbf_z6SFU8vexPkIekIvjwvpf0AmwiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Advanced+Mechatronic+Systems&rft.atitle=Humanoid+Control+Technology+for+Lower+Limb+Rehabilitation+Robots+Based+on+Human+Gait+Data&rft.au=Gao%2C+Shengda&rft.au=Wang%2C+Aihui&rft.au=Duan%2C+Huichao&rft.au=Yue%2C+Xuebing&rft.date=2024-11-26&rft.pub=IEEE&rft.eissn=2325-0690&rft.spage=171&rft.epage=176&rft_id=info:doi/10.1109%2FICAMechS63130.2024.10818727&rft.externalDocID=10818727