High Precision State of Health Estimation of Lithium-ion Batteries Based on PSO-LSSVM AdaBoost Model

The accurate estimation of the state of health (SOH) of lithium-ion batteries is paramount for the maintenance and longevity of battery management systems (BMS). To enhance the precision and robustness of SOH prediction models for lithium-ion batteries, this article introduces a novel approach that...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE 25th China Conference on System Simulation Technology and its Application (CCSSTA) pp. 570 - 574
Main Authors Feng, Renjun, Wang, Shunli, Yu, Chunmei, Cui, Yixiu, Zhou, Yifei
Format Conference Proceeding
LanguageEnglish
Published IEEE 21.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The accurate estimation of the state of health (SOH) of lithium-ion batteries is paramount for the maintenance and longevity of battery management systems (BMS). To enhance the precision and robustness of SOH prediction models for lithium-ion batteries, this article introduces a novel approach that utilizes a particle swarm optimization (PSO) algorithm to optimize the least squares support vector machine (LSSVM) model for battery SOH estimation. The study focuses on three individual batteries from the NASA battery dataset as the primary research subjects. The PSO algorithm is then employed to optimize the regularization parameters and kernel parameters of the LSSVM, ensuring that the model is tailored to the specific characteristics of the battery data. Furthermore, the AdaBoost algorithm is integrated into the framework to train the PSO-optimized LSSVM, aiming to further boost the model's predictive capabilities. The experimental results demonstrate the effectiveness and reliability of the proposed model, indicating its potential for accurate SOH estimation in lithium-ion batteries.
AbstractList The accurate estimation of the state of health (SOH) of lithium-ion batteries is paramount for the maintenance and longevity of battery management systems (BMS). To enhance the precision and robustness of SOH prediction models for lithium-ion batteries, this article introduces a novel approach that utilizes a particle swarm optimization (PSO) algorithm to optimize the least squares support vector machine (LSSVM) model for battery SOH estimation. The study focuses on three individual batteries from the NASA battery dataset as the primary research subjects. The PSO algorithm is then employed to optimize the regularization parameters and kernel parameters of the LSSVM, ensuring that the model is tailored to the specific characteristics of the battery data. Furthermore, the AdaBoost algorithm is integrated into the framework to train the PSO-optimized LSSVM, aiming to further boost the model's predictive capabilities. The experimental results demonstrate the effectiveness and reliability of the proposed model, indicating its potential for accurate SOH estimation in lithium-ion batteries.
Author Wang, Shunli
Yu, Chunmei
Feng, Renjun
Zhou, Yifei
Cui, Yixiu
Author_xml – sequence: 1
  givenname: Renjun
  surname: Feng
  fullname: Feng, Renjun
  email: 2281643715@qq.com
  organization: Southwest University of Science and Technology,School of Information Engineering,Mian Yang,China
– sequence: 2
  givenname: Shunli
  surname: Wang
  fullname: Wang, Shunli
  email: wangshunli1985@qq.com
  organization: Southwest University of Science and Technology,School of Information Engineering,Mian Yang,China
– sequence: 3
  givenname: Chunmei
  surname: Yu
  fullname: Yu, Chunmei
  email: 512232478@qq.com
  organization: Southwest University of Science and Technology,School of Information Engineering,Mian Yang,China
– sequence: 4
  givenname: Yixiu
  surname: Cui
  fullname: Cui, Yixiu
  email: cyxiu@caep.cn
  organization: Institute of Electronic Engineering,China Academy of Engineering Physics,Mian Yang,China,621010
– sequence: 5
  givenname: Yifei
  surname: Zhou
  fullname: Zhou, Yifei
  email: 976850947@qq.com
  organization: Southwest University of Science and Technology,School of Information Engineering,Mian Yang,China
BookMark eNo1T91OgzAYrYle6NwbeFEfAGwL-0ovGZliwrIlEG-X0n5IEwaG1gvfXhbn1flLTs55ILfjNCIhz5zFnDP1UhR13eQgmIJYMJHGnIHiUrEbslZSZcmGJQDA2D2xpfvs6XFG47ybRloHHZBOHS1RD6GnOx_cWYdLtJiVC737PkcXudUh4OzQL8yjpYt1rA9RVdcfe5pbvZ0mH-h-sjg8krtODx7XV1yR5nXXFGVUHd7ei7yKnOIh6pJMt9C2gkneMSNTziE1VvFWGchAbITVNkVpheJdZqQC4G2yvGozYxh0yYo8_dU6RDx9zcvw-ef0_z35BX_EU68
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCSSTA62096.2024.10691790
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350366600
EndPage 574
ExternalDocumentID 10691790
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-f38ab6bb2071f0c741164cd91b9c686252dad4e7d291f8c79661b3790b8cc06f3
IEDL.DBID RIE
IngestDate Wed Oct 09 06:12:58 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-f38ab6bb2071f0c741164cd91b9c686252dad4e7d291f8c79661b3790b8cc06f3
PageCount 5
ParticipantIDs ieee_primary_10691790
PublicationCentury 2000
PublicationDate 2024-July-21
PublicationDateYYYYMMDD 2024-07-21
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-21
  day: 21
PublicationDecade 2020
PublicationTitle 2024 IEEE 25th China Conference on System Simulation Technology and its Application (CCSSTA)
PublicationTitleAbbrev CCSSTA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8794135
Snippet The accurate estimation of the state of health (SOH) of lithium-ion batteries is paramount for the maintenance and longevity of battery management systems...
SourceID ieee
SourceType Publisher
StartPage 570
SubjectTerms Adaboost algorithm
Battery management systems
Estimation
Feature extraction
health features
Kernel
least squares support vector machine
Lithium-ion batteries
NASA
Particle swarm optimization
Prediction algorithms
Predictive models
state of health
Support vector machines
Title High Precision State of Health Estimation of Lithium-ion Batteries Based on PSO-LSSVM AdaBoost Model
URI https://ieeexplore.ieee.org/document/10691790
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66g3hSceJvInhN7Y8sbY5zbAzZ5qBTdhtN8oJDXcW1F_96X9pOURC8JY9C2oT0vS953_cIubZZEoLxOdMiA8a1wv9gnHBmg1hbH2KtreM7jydi-MDv5p15Q1avuDAAUCWfgeea1V2-yXXpjspwhwvpFKW2yTYit5qstUOuGt3Mm14vTWddEWJUjsAv5N7m-R-VUyrHMdgjk82Qdb7Is1cWytMfv9QY__1O-6T9zdGj0y_vc0C2YHVIjEvbQHNTOIdWoSTNLa3ZRrSPG7rmKjrjaFk8LctX5rq1zibCZmytwVA0TdN7NkrTxzHtmuw2z9cFdZXTXtpkNujPekPW1FFgSxkUzEZJpoRSIUYT1tcYQiBE0kYGSmrHD-mEJjMcYhPKwCY6RgAUqAg_SSVa-8JGR6S1yldwTGikZAIQce13gCe-depx6N2iQChpLc9OSNvN0OKtVspYbCbn9A_7Gdl1C-XOSsPgnLSK9xIu0MkX6rJa3E9JSqfi
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QX1SceLdCL6mNm16e5xjY2o3B62yt9Hc2FBXce2Lv96TtlMUBN-SAyVtQvqdk5zvOwhd6Sx0lLQZEX6mCBMc_oNByIimgdC2CoTQhu88HPmDR3Y38SYNWb3iwiilquQzZZlmdZcvc1GaozLY4X5kFKXW0QYAv0drutYmumyUM6-73SRJO74DfjmEfg6zVk_8qJ1SQUd_B41Wg9YZI89WWXBLfPzSY_z3W-2i9jdLD4-_8GcPranFPpImcQPMTekcXDmTONe45hvhHmzpmq1ojPG8mM3LV2K6tdImBM7QWiqJwTROHkicJE9D3JHZTZ4vC2xqp720Udrvpd0BaSopkHlEC6LdMOM-5w74E9oW4ERAkCRkRHkkDEPEc2QmmQqkE1EdigBCIMpd-CQeCmH72j1ArUW-UIcIuzwKlXKZsD3FQlsb_TjAN5f6PNKaZUeobWZo-lZrZUxXk3P8h_0CbQ3SYTyNb0f3J2jbLJo5OXXoKWoV76U6A8gv-Hm10J887qsr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+25th+China+Conference+on+System+Simulation+Technology+and+its+Application+%28CCSSTA%29&rft.atitle=High+Precision+State+of+Health+Estimation+of+Lithium-ion+Batteries+Based+on+PSO-LSSVM+AdaBoost+Model&rft.au=Feng%2C+Renjun&rft.au=Wang%2C+Shunli&rft.au=Yu%2C+Chunmei&rft.au=Cui%2C+Yixiu&rft.date=2024-07-21&rft.pub=IEEE&rft.spage=570&rft.epage=574&rft_id=info:doi/10.1109%2FCCSSTA62096.2024.10691790&rft.externalDocID=10691790