An Energy-Aware UAVs Path Coverage for Critical Infrastructure Inspections

Critical infrastructures increasingly rely on unmanned aerial vehicles (UAVs) for inspection tasks. The significance of different components within these infrastructures is subject to variability and can be influenced by external factors. The principal aim of routine UAV inspections is to ensure dif...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Advanced Cloud and Big Data pp. 222 - 227
Main Authors Wang, Yifan, Zeng, Wei, Li, Guanyu, Xiong, Chenglong, Wang, Zicheng, Mao, Yingchi
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.11.2024
Subjects
Online AccessGet full text
ISSN2573-301X
DOI10.1109/CBD65573.2024.00048

Cover

Loading…
Abstract Critical infrastructures increasingly rely on unmanned aerial vehicles (UAVs) for inspection tasks. The significance of different components within these infrastructures is subject to variability and can be influenced by external factors. The principal aim of routine UAV inspections is to ensure differentiated coverage of pivotal sections with minimal energy consumption. However, extant research on UAV path coverage fails to fully account for the variability and dynamic shifts in regional significance and their impact on coverage efficacy. This paper presents an energy-aware collaborative coverage policy for UAVs, designated as EA-MATD3.EA-MATD3 employs a dynamic weight region partitioning method tailored to real-world environments and addresses the action selection challenge for UAVs using a discrete Partially Observable Markov Decision Process (Dec-POMDP). By amalgamating MATD3 with stacked LSTM, this approach mitigates redundant path overlaps and unnecessary action replication across multiple agents, thus optimizing coverage and diminishing energy usage. Simulation outcomes demonstrate that EA-MATD3 reduces energy consumption by an average of 9.65% relative to the Greedy, MADDPG, and MATD3 algorithms while sustaining a superior coverage rate.
AbstractList Critical infrastructures increasingly rely on unmanned aerial vehicles (UAVs) for inspection tasks. The significance of different components within these infrastructures is subject to variability and can be influenced by external factors. The principal aim of routine UAV inspections is to ensure differentiated coverage of pivotal sections with minimal energy consumption. However, extant research on UAV path coverage fails to fully account for the variability and dynamic shifts in regional significance and their impact on coverage efficacy. This paper presents an energy-aware collaborative coverage policy for UAVs, designated as EA-MATD3.EA-MATD3 employs a dynamic weight region partitioning method tailored to real-world environments and addresses the action selection challenge for UAVs using a discrete Partially Observable Markov Decision Process (Dec-POMDP). By amalgamating MATD3 with stacked LSTM, this approach mitigates redundant path overlaps and unnecessary action replication across multiple agents, thus optimizing coverage and diminishing energy usage. Simulation outcomes demonstrate that EA-MATD3 reduces energy consumption by an average of 9.65% relative to the Greedy, MADDPG, and MATD3 algorithms while sustaining a superior coverage rate.
Author Li, Guanyu
Zeng, Wei
Wang, Zicheng
Mao, Yingchi
Xiong, Chenglong
Wang, Yifan
Author_xml – sequence: 1
  givenname: Yifan
  surname: Wang
  fullname: Wang, Yifan
  organization: College of Computer Science and Software Engineering, Hohai University,Nanjing,China
– sequence: 2
  givenname: Wei
  surname: Zeng
  fullname: Zeng, Wei
  organization: Huaneng Lancang River Hydropower Co. CHINA HUANENG Group,Kunming,China
– sequence: 3
  givenname: Guanyu
  surname: Li
  fullname: Li, Guanyu
  organization: College of Computer Science and Software Engineering, Hohai University,Nanjing,China
– sequence: 4
  givenname: Chenglong
  surname: Xiong
  fullname: Xiong, Chenglong
  organization: Huaneng Lancang River Hydropower Co. CHINA HUANENG Group,Kunming,China
– sequence: 5
  givenname: Zicheng
  surname: Wang
  fullname: Wang, Zicheng
  organization: Power China Kunming Engineering Co.,Yunnan,China
– sequence: 6
  givenname: Yingchi
  surname: Mao
  fullname: Mao, Yingchi
  email: yingchimao@hhu.edu.cn
  organization: College of Computer Science and Software Engineering, Hohai University,Nanjing,China
BookMark eNotz0FLwzAYxvEoCs7ZT6CHfIHWpG_SJMdap1YGepjibaTp21mZ6Ui6yb69BT09lx8P_C_JmR88EnLNWcY5M7fV3X0hpYIsZ7nIGGNCn5DEKKMBuJyIEqdklk8iBcY_LkgS49fEgCslAWbkufR04TFsjmn5YwPSt_I90lc7ftJqOGCwG6TdEGgV-rF3dktr3wUbx7B3437itY87dGM_-HhFzju7jZj875ysHhar6ildvjzWVblMe8PH1KHrVC6NFqYTDQfUItetLQqmXINotQTRIABIWyCXrWkLBlYr3qFxFgTMyc3fbY-I613ov204rjnTUuup8xfj-U-g
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CBD65573.2024.00048
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331511074
EISSN 2573-301X
EndPage 227
ExternalDocumentID 10858857
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i91t-cecf7259849f4b13e8428da6607cbeea8534be3335a6e15d9d603a871fe9ca343
IEDL.DBID RIE
IngestDate Wed Aug 27 01:55:39 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-cecf7259849f4b13e8428da6607cbeea8534be3335a6e15d9d603a871fe9ca343
PageCount 6
ParticipantIDs ieee_primary_10858857
PublicationCentury 2000
PublicationDate 2024-Nov.-28
PublicationDateYYYYMMDD 2024-11-28
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-Nov.-28
  day: 28
PublicationDecade 2020
PublicationTitle International Conference on Advanced Cloud and Big Data
PublicationTitleAbbrev CBD
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177533
Score 1.8935109
Snippet Critical infrastructures increasingly rely on unmanned aerial vehicles (UAVs) for inspection tasks. The significance of different components within these...
SourceID ieee
SourceType Publisher
StartPage 222
SubjectTerms Autonomous aerial vehicles
Cooperative inspection
Coverage path planning
Critical infrastructure
Energy consumption
Inspection
Long short term memory
Markov decision processes
Multi-agent deep reinforcement learning
Optimization
Simulation
Termination of employment
Vehicle dynamics
Title An Energy-Aware UAVs Path Coverage for Critical Infrastructure Inspections
URI https://ieeexplore.ieee.org/document/10858857
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na8JAEF1aTz3ZD0u_2UOvUZOd3WyO1ioqVDxo8Sa7mwmUQixWKfTXdzYflhYKvYUQSLKT5M2bzHvD2D3aNBHgu8RNKgLQIHyhCQIHoY2lIYwAL3B-mqrRAiZLuazE6oUWBhGL5jNs-83iX366djtfKuv4TnmtZXzIDom5lWKtfUGFgJBSb1E5C4XdpNN_eFRSxoJYYASFLaf-MUOlgJBhk03rk5edI6_t3da23ecvX8Z_X90xa32r9fhsj0Mn7ADzU9asxzXw6u09Y5NezgeF1C_ofZgN8kXv-Z3PKAXkfd_ISV8WTiksr6cf8HGebUxpMLujw8d5Kcuk57TF5sPBvD8KqlEKwUsSbgOHLouJ6GhIMrChQE2sIzVKdWNnEQ1hNlgUQkijMJRpkqquMMSlMkycESDOWSNf53jBeKiilOIHYFMJVgoricVFTgvi2eCUvmQtvzSrt9IsY1WvytUf-6_ZkQ-Pl_dF-oY16KbwlnB-a--K-H4BpHumUw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4oHvSED4xv9-C1QLuz2-0RUQIIhAMYbmRfJMakGISY-Oud7QOjiYm3pmnSdqftN990vm8IuXPaJgx8l7iyLAAJzBeaIDAQ6pgrxAjwAufhSHSn0J_xWSFWz7Qwzrms-czV_Wb2L98uzcaXyhq-U15KHu-SPQR-SHK51rakglCIyTcrvIXCZtJo3z8IzmOGPDCCzJhT_piikoFIp0pG5enz3pHX-mat6-bzlzPjv6_vkNS-9Xp0vEWiI7Lj0mNSLQc20OL9PSH9VkofM7Ff0PpQK0enred3OsYkkLZ9Kyd-WygmsbScf0B76WKlcovZDR7eS3NhJj6pNTLpPE7a3aAYphC8JOE6MM4sYqQ6EpIF6JA5ibzDKiGasdHOKURt0I4xxpVwIbeJFU2mkE0tXGIUA3ZKKukydWeEhiKyGEEAbTlozjRHHhcZyZBpgxHynNT80szfcruMebkqF3_svyX73clwMB_0Rk-X5MCHyov9InlFKniD7hpRf61vslh_AZEGqaM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Advanced+Cloud+and+Big+Data&rft.atitle=An+Energy-Aware+UAVs+Path+Coverage+for+Critical+Infrastructure+Inspections&rft.au=Wang%2C+Yifan&rft.au=Zeng%2C+Wei&rft.au=Li%2C+Guanyu&rft.au=Xiong%2C+Chenglong&rft.date=2024-11-28&rft.pub=IEEE&rft.eissn=2573-301X&rft.spage=222&rft.epage=227&rft_id=info:doi/10.1109%2FCBD65573.2024.00048&rft.externalDocID=10858857