Hybrid Forecasting Model for Smart Grid Using Exogenous Variables

Smart grids augment the existing power grids with information and communication technology to enable enhanced monitoring and control. Power grid resilience and failure management have always been problems that have intrigued researchers and policymakers, who want to ensure the services offered are u...

Full description

Saved in:
Bibliographic Details
Published in2024 International Conference on Emerging Trends in Smart Technologies (ICETST) pp. 1 - 6
Main Authors Shaikh, Faraz, Khattak, Hasan Ali
Format Conference Proceeding
LanguageEnglish
Published IEEE 10.10.2024
Subjects
Online AccessGet full text
DOI10.1109/ICETST62952.2024.10737930

Cover

Loading…
Abstract Smart grids augment the existing power grids with information and communication technology to enable enhanced monitoring and control. Power grid resilience and failure management have always been problems that have intrigued researchers and policymakers, who want to ensure the services offered are up to the mark and consumers can rely on the system. To improve the quality of service, data analytics, and forecasting can help with predictive analytics. Forecasting in smart grids can ensure that the optimal relationship between power generation and consumption can be optimized effectively. Hybrid forecasting, including multi-criteria forecasting, has shown promising results. In this paper, we outline exogenous variables from weather data that can be used in real-time hybrid forecasting of the smart grid in an energy management system. The framework presented in this work presents a base model for enhancing the quality of service in smart grid forecasting.
AbstractList Smart grids augment the existing power grids with information and communication technology to enable enhanced monitoring and control. Power grid resilience and failure management have always been problems that have intrigued researchers and policymakers, who want to ensure the services offered are up to the mark and consumers can rely on the system. To improve the quality of service, data analytics, and forecasting can help with predictive analytics. Forecasting in smart grids can ensure that the optimal relationship between power generation and consumption can be optimized effectively. Hybrid forecasting, including multi-criteria forecasting, has shown promising results. In this paper, we outline exogenous variables from weather data that can be used in real-time hybrid forecasting of the smart grid in an energy management system. The framework presented in this work presents a base model for enhancing the quality of service in smart grid forecasting.
Author Shaikh, Faraz
Khattak, Hasan Ali
Author_xml – sequence: 1
  givenname: Faraz
  surname: Shaikh
  fullname: Shaikh, Faraz
  email: ffaraz.mscse22srcms@student.nust.edu.pk
  organization: National University of Sciences & Technology (NUST),Islamabad,Pakistan,44500
– sequence: 2
  givenname: Hasan Ali
  surname: Khattak
  fullname: Khattak, Hasan Ali
  email: hasan.alikhattak@seecs.nust.edu.pk
  organization: National University of Sciences & Technology (NUST),Islamabad,Pakistan,44500
BookMark eNo1j01OwzAUhI0ECyi9AQtzgATbL47tZRWlP1IRiwa2lR2_VJZCjJwg0duTijKbbzGj0cwDuR3igIQ8c5ZzzszLrqqbQ1MKI0UumChyzhQoA-yGLI0yGoBLLrVk92S1PbsUPF3HhK0dpzCc6Gv02NMuJnr4tGmim0vgfbxY9U884RC_R_phU7Cux_GR3HW2H3F55YI067qpttn-bbOrVvssGD5lrbe6LArdWl6CcU6DtciU4TgDlJuFZSmAg-86720LshDYdlpZ4bz3sCBPf7UBEY9fKczTzsf_Y_ALOJFKCQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICETST62952.2024.10737930
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331515850
EndPage 6
ExternalDocumentID 10737930
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-cda86448ca1639bb83aae0791eae037bbbbe662313dffddac3542ecf87a2bddd3
IEDL.DBID RIE
IngestDate Wed Nov 13 06:11:47 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-cda86448ca1639bb83aae0791eae037bbbbe662313dffddac3542ecf87a2bddd3
PageCount 6
ParticipantIDs ieee_primary_10737930
PublicationCentury 2000
PublicationDate 2024-Oct.-10
PublicationDateYYYYMMDD 2024-10-10
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-10
  day: 10
PublicationDecade 2020
PublicationTitle 2024 International Conference on Emerging Trends in Smart Technologies (ICETST)
PublicationTitleAbbrev ICETST
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.887999
Snippet Smart grids augment the existing power grids with information and communication technology to enable enhanced monitoring and control. Power grid resilience and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Demand Response
Exogenous Variables
Forecasting
Hybrid Forecasting
Meteorology
Monitoring
Power generation
Predictive analytics
Predictive models
Quality of service
Real-time systems
Resilience
Smart Grid
Smart grids
Weather Data Integration
Title Hybrid Forecasting Model for Smart Grid Using Exogenous Variables
URI https://ieeexplore.ieee.org/document/10737930
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8NADA-6B_FJxYrfnOBra6_X9tpHGZtTcAirsrdxXwVRt-E6UP96k7ZTFAQLR8tx0B5JmqTN7xeAc4mKYblWhMwlUm1NJpXEfhShMdkcR0jY4dthOriPb8bJuAWr11gY51xdfOYCuqz_5duZWdKnMrRwKVCfMENfx8ytAWttwFnLm3lx3e0VoyKN8oQQVlEcrNb_6JxSO47-FgxXt2zqRZ6CZaUD8_GLjfHfz7QN3jdGj919eZ8dWHPTXbgcvBMCi1HDTaMWVNLMqNvZM8PYlI1eUE_YFS2oKwVY723WcLSyB0yZCUS18KDo94ruwG-bJPiPOa98Y1VGKZZRGFjlWmdCKRfKnDs8CanxcCmGOFzYsrRWGZHEkTNlJlWkURJiDzrT2dTtA8sUt6XC-ESoJHZcZuiqUhGaTIg0j6U-AI-2P5k3NBiT1c4P_5g_gk2SAr3oeXgMnep16U7Qg1f6tJbcJ-v2nMs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8NADA8yQX1SceK3J_ja2uv181HGZqfbEFZlb-O-CqJu4jpQ_3qTdlMUBAtHS7nSHkn6S9r8EoDzGBXDcCWJmUtFtRWZVBg4vo_GZFIcHnGH-4MouwuuR-FoQVavuDDW2ir5zLp0WP3LN1M9p09laOGxQH3CCH0VgT_kNV1rDc4WlTMvuq12PswjPw2JY-UH7vKKH71TKujobMJgedM6Y-TRnZfK1R-_6jH--6m2oPnN0mO3X_izDSt2sgOX2TtxsBi13NRyRknNjPqdPTH0TtnwGTWFXdGEKleAtd-mdZVWdo9BM9GoZk3IO-28lTmLNgnOQ8pLRxuZUJClJbpWqVKJkNJ6ccot7kSscLMROjlcmKIwRmoRBr7VRRJLX6EsxC40JtOJ3QOWSG4KiR6KkGFgeZwgWEXC04kQURrEah-atPzxS10IY7xc-cEf509hPcv7vXGvO7g5hA2SCL32uXcEjfJ1bo8Rz0t1UknxE0vToBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Emerging+Trends+in+Smart+Technologies+%28ICETST%29&rft.atitle=Hybrid+Forecasting+Model+for+Smart+Grid+Using+Exogenous+Variables&rft.au=Shaikh%2C+Faraz&rft.au=Khattak%2C+Hasan+Ali&rft.date=2024-10-10&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICETST62952.2024.10737930&rft.externalDocID=10737930