Hybrid Forecasting Model for Smart Grid Using Exogenous Variables
Smart grids augment the existing power grids with information and communication technology to enable enhanced monitoring and control. Power grid resilience and failure management have always been problems that have intrigued researchers and policymakers, who want to ensure the services offered are u...
Saved in:
Published in | 2024 International Conference on Emerging Trends in Smart Technologies (ICETST) pp. 1 - 6 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
10.10.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICETST62952.2024.10737930 |
Cover
Loading…
Abstract | Smart grids augment the existing power grids with information and communication technology to enable enhanced monitoring and control. Power grid resilience and failure management have always been problems that have intrigued researchers and policymakers, who want to ensure the services offered are up to the mark and consumers can rely on the system. To improve the quality of service, data analytics, and forecasting can help with predictive analytics. Forecasting in smart grids can ensure that the optimal relationship between power generation and consumption can be optimized effectively. Hybrid forecasting, including multi-criteria forecasting, has shown promising results. In this paper, we outline exogenous variables from weather data that can be used in real-time hybrid forecasting of the smart grid in an energy management system. The framework presented in this work presents a base model for enhancing the quality of service in smart grid forecasting. |
---|---|
AbstractList | Smart grids augment the existing power grids with information and communication technology to enable enhanced monitoring and control. Power grid resilience and failure management have always been problems that have intrigued researchers and policymakers, who want to ensure the services offered are up to the mark and consumers can rely on the system. To improve the quality of service, data analytics, and forecasting can help with predictive analytics. Forecasting in smart grids can ensure that the optimal relationship between power generation and consumption can be optimized effectively. Hybrid forecasting, including multi-criteria forecasting, has shown promising results. In this paper, we outline exogenous variables from weather data that can be used in real-time hybrid forecasting of the smart grid in an energy management system. The framework presented in this work presents a base model for enhancing the quality of service in smart grid forecasting. |
Author | Shaikh, Faraz Khattak, Hasan Ali |
Author_xml | – sequence: 1 givenname: Faraz surname: Shaikh fullname: Shaikh, Faraz email: ffaraz.mscse22srcms@student.nust.edu.pk organization: National University of Sciences & Technology (NUST),Islamabad,Pakistan,44500 – sequence: 2 givenname: Hasan Ali surname: Khattak fullname: Khattak, Hasan Ali email: hasan.alikhattak@seecs.nust.edu.pk organization: National University of Sciences & Technology (NUST),Islamabad,Pakistan,44500 |
BookMark | eNo1j01OwzAUhI0ECyi9AQtzgATbL47tZRWlP1IRiwa2lR2_VJZCjJwg0duTijKbbzGj0cwDuR3igIQ8c5ZzzszLrqqbQ1MKI0UumChyzhQoA-yGLI0yGoBLLrVk92S1PbsUPF3HhK0dpzCc6Gv02NMuJnr4tGmim0vgfbxY9U884RC_R_phU7Cux_GR3HW2H3F55YI067qpttn-bbOrVvssGD5lrbe6LArdWl6CcU6DtciU4TgDlJuFZSmAg-86720LshDYdlpZ4bz3sCBPf7UBEY9fKczTzsf_Y_ALOJFKCQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICETST62952.2024.10737930 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798331515850 |
EndPage | 6 |
ExternalDocumentID | 10737930 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i91t-cda86448ca1639bb83aae0791eae037bbbbe662313dffddac3542ecf87a2bddd3 |
IEDL.DBID | RIE |
IngestDate | Wed Nov 13 06:11:47 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-cda86448ca1639bb83aae0791eae037bbbbe662313dffddac3542ecf87a2bddd3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10737930 |
PublicationCentury | 2000 |
PublicationDate | 2024-Oct.-10 |
PublicationDateYYYYMMDD | 2024-10-10 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | 2024 International Conference on Emerging Trends in Smart Technologies (ICETST) |
PublicationTitleAbbrev | ICETST |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.887999 |
Snippet | Smart grids augment the existing power grids with information and communication technology to enable enhanced monitoring and control. Power grid resilience and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Demand Response Exogenous Variables Forecasting Hybrid Forecasting Meteorology Monitoring Power generation Predictive analytics Predictive models Quality of service Real-time systems Resilience Smart Grid Smart grids Weather Data Integration |
Title | Hybrid Forecasting Model for Smart Grid Using Exogenous Variables |
URI | https://ieeexplore.ieee.org/document/10737930 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8NADA-6B_FJxYrfnOBra6_X9tpHGZtTcAirsrdxXwVRt-E6UP96k7ZTFAQLR8tx0B5JmqTN7xeAc4mKYblWhMwlUm1NJpXEfhShMdkcR0jY4dthOriPb8bJuAWr11gY51xdfOYCuqz_5duZWdKnMrRwKVCfMENfx8ytAWttwFnLm3lx3e0VoyKN8oQQVlEcrNb_6JxSO47-FgxXt2zqRZ6CZaUD8_GLjfHfz7QN3jdGj919eZ8dWHPTXbgcvBMCi1HDTaMWVNLMqNvZM8PYlI1eUE_YFS2oKwVY723WcLSyB0yZCUS18KDo94ruwG-bJPiPOa98Y1VGKZZRGFjlWmdCKRfKnDs8CanxcCmGOFzYsrRWGZHEkTNlJlWkURJiDzrT2dTtA8sUt6XC-ESoJHZcZuiqUhGaTIg0j6U-AI-2P5k3NBiT1c4P_5g_gk2SAr3oeXgMnep16U7Qg1f6tJbcJ-v2nMs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8NADA8yQX1SceK3J_ja2uv181HGZqfbEFZlb-O-CqJu4jpQ_3qTdlMUBAtHS7nSHkn6S9r8EoDzGBXDcCWJmUtFtRWZVBg4vo_GZFIcHnGH-4MouwuuR-FoQVavuDDW2ir5zLp0WP3LN1M9p09laOGxQH3CCH0VgT_kNV1rDc4WlTMvuq12PswjPw2JY-UH7vKKH71TKujobMJgedM6Y-TRnZfK1R-_6jH--6m2oPnN0mO3X_izDSt2sgOX2TtxsBi13NRyRknNjPqdPTH0TtnwGTWFXdGEKleAtd-mdZVWdo9BM9GoZk3IO-28lTmLNgnOQ8pLRxuZUJClJbpWqVKJkNJ6ccot7kSscLMROjlcmKIwRmoRBr7VRRJLX6EsxC40JtOJ3QOWSG4KiR6KkGFgeZwgWEXC04kQURrEah-atPzxS10IY7xc-cEf509hPcv7vXGvO7g5hA2SCL32uXcEjfJ1bo8Rz0t1UknxE0vToBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Emerging+Trends+in+Smart+Technologies+%28ICETST%29&rft.atitle=Hybrid+Forecasting+Model+for+Smart+Grid+Using+Exogenous+Variables&rft.au=Shaikh%2C+Faraz&rft.au=Khattak%2C+Hasan+Ali&rft.date=2024-10-10&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICETST62952.2024.10737930&rft.externalDocID=10737930 |