Improved algorithm for liver tumor segmentation in CT images based on U-Net

Aiming at the problem of inaccurate boundary segmentation of liver tumors by existing algorithms, an improved model REEC-UNet based on U-Net was proposed. Firstly, in order to alleviate the problem of gradient disappearance and semantic information loss in deep networks, residual connection is intro...

Full description

Saved in:
Bibliographic Details
Published in2024 2nd International Conference on Signal Processing and Intelligent Computing (SPIC) pp. 1022 - 1027
Main Authors Qi, Yan, Zhao, Hongkun
Format Conference Proceeding
LanguageEnglish
Published IEEE 20.09.2024
Subjects
Online AccessGet full text
DOI10.1109/SPIC62469.2024.10691416

Cover

Loading…
Abstract Aiming at the problem of inaccurate boundary segmentation of liver tumors by existing algorithms, an improved model REEC-UNet based on U-Net was proposed. Firstly, in order to alleviate the problem of gradient disappearance and semantic information loss in deep networks, residual connection is introduced into U-Net network framework. Then, the ECANet channel attention network was added in the coding stage and decoding stage to improve the performance of the convolutional neural network. The training and testing were carried out on the LiTS2017 dataset. The experimental findings demonstrated that the proposed method achieved more precise tumor boundary segmentation and enhanced the accuracy of liver tumor segmentation.
AbstractList Aiming at the problem of inaccurate boundary segmentation of liver tumors by existing algorithms, an improved model REEC-UNet based on U-Net was proposed. Firstly, in order to alleviate the problem of gradient disappearance and semantic information loss in deep networks, residual connection is introduced into U-Net network framework. Then, the ECANet channel attention network was added in the coding stage and decoding stage to improve the performance of the convolutional neural network. The training and testing were carried out on the LiTS2017 dataset. The experimental findings demonstrated that the proposed method achieved more precise tumor boundary segmentation and enhanced the accuracy of liver tumor segmentation.
Author Zhao, Hongkun
Qi, Yan
Author_xml – sequence: 1
  givenname: Yan
  surname: Qi
  fullname: Qi, Yan
  email: qiyan@sylu.edu.cn
  organization: Shenyang Ligong University,School of Information Science and Engineering,Shenyang,China
– sequence: 2
  givenname: Hongkun
  surname: Zhao
  fullname: Zhao, Hongkun
  email: zhaohongkun2020@163.com
  organization: Shenyang Ligong University,School of Information Science and Engineering,Shenyang,China
BookMark eNo1T9tKxDAUjKAPuu4fCOYHWnNrNnmU4qW4qGB9XmJzTg20zZLGBf_eyuq8zDAww8wFOZ3iBIRcc1ZyzuzN22tTa6G0LQUTquRMW664PiFru7FGVkxqs-CcPDXjPsUDeOqGPqaQP0eKMdEhHCDR_DUueoZ-hCm7HOJEw0TrlobR9TDTDzcvycV9L54hX5IzdMMM6z9ekfb-rq0fi-3LQ1PfbotgeS4612ltDRNoPfedUh6dYabCyqBELhRqh2YDylguvK-8rjqD6nc0yk45uSJXx9oAALt9Wrak793_RfkD6ndLwQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SPIC62469.2024.10691416
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350368888
EndPage 1027
ExternalDocumentID 10691416
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-cac669802f9d1dc44dfa8085f58f3f124f6af87e48912dd5d65c8f48350f3c4a3
IEDL.DBID RIE
IngestDate Wed Oct 09 06:12:57 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-cac669802f9d1dc44dfa8085f58f3f124f6af87e48912dd5d65c8f48350f3c4a3
PageCount 6
ParticipantIDs ieee_primary_10691416
PublicationCentury 2000
PublicationDate 2024-Sept.-20
PublicationDateYYYYMMDD 2024-09-20
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-20
  day: 20
PublicationDecade 2020
PublicationTitle 2024 2nd International Conference on Signal Processing and Intelligent Computing (SPIC)
PublicationTitleAbbrev SPIC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8859143
Snippet Aiming at the problem of inaccurate boundary segmentation of liver tumors by existing algorithms, an improved model REEC-UNet based on U-Net was proposed....
SourceID ieee
SourceType Publisher
StartPage 1022
SubjectTerms Computed tomography
Image segmentation
Liver
liver CT images
medical image segmentation
Robustness
Semantics
Signal processing
Signal processing algorithms
Testing
Training
Tumors
U-Net
Title Improved algorithm for liver tumor segmentation in CT images based on U-Net
URI https://ieeexplore.ieee.org/document/10691416
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl5TmzbN0vNwTMUxcIPdRtr3ModrJ669-Nf7-mOKguAthEBKHun3vuT78hi7kRBpACcFKhMKRRAqjDWJMIjW-c43UNdYehrr0Uw9zKN5a1avvTCIWIvP0Kua9V0-bNKyOiqjHa5jSRlEh3WIuTVmrVazJf349nlyP9AB8T2ifYHydqN_1E2pYWN4wMa7CRu1yKtXFomXfvx6i_HfX3TIet8OPT75wp4jtof5MXtsTggQuF0vN8T6XzJOOSlfV9oLXpQZtbe4zFq7Uc5XOR9M-Sqjf8qWV3gGnHpnYoxFj02Hd9PBSLTFEsQqloVIbap1bPzAxSAhVQqcNZROuci40BGIO22d6VNEYhkARKCj1DiKT-S7MFU2PGHdfJPjKeORBB8J1sN-gCqxjugzEuhHEMiQJoAz1qsWYvHWPIex2K3B-R_9F2y_ikclsgj8S9Yt3ku8IiQvkus6gp-Z8p7K
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pSceJvc_Da2rRJlp6HY3NbGdjBbiNrXubQduLai3-9rz-mKAjeQggk5JF87yXf9x4hd8wIaYxlDnAVOBwh1FFaLRwFoK1nPWWqGkvjSPan_HEmZo1YvdLCAEBFPgO3bFZ_-WadFOVTGZ5wGTL0IHbJHgI_D2u5VsPaYl54_zQZdKWPER8Gfj53t-N_VE6pgKN3SKLtlDVf5MUt8oWbfPzKxvjvNR2R9rdGj06-0OeY7EB2Qob1GwEYql-Xa4z7n1OKXil9LdkXNC9SbG9gmTaCo4yuMtqN6SrFW2VDS0QzFHunTgR5m8S9h7jbd5pyCc4qZLmT6ETKUHm-DQ0zCefGaoUOlRXKBhZh3EptVQdtEjLfGGGkSJRFCwnPBgnXwSlpZesMzggVzHiAwB50fOALbTGABoR9YXwW4ATmnLTLjZi_1Qkx5ts9uPij_5bs9-PxaD4aRMNLclDapqRc-N4VaeXvBVwjrueLm8qanyGloho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+2nd+International+Conference+on+Signal+Processing+and+Intelligent+Computing+%28SPIC%29&rft.atitle=Improved+algorithm+for+liver+tumor+segmentation+in+CT+images+based+on+U-Net&rft.au=Qi%2C+Yan&rft.au=Zhao%2C+Hongkun&rft.date=2024-09-20&rft.pub=IEEE&rft.spage=1022&rft.epage=1027&rft_id=info:doi/10.1109%2FSPIC62469.2024.10691416&rft.externalDocID=10691416