Adaptive Anomaly Detection in Dynamic Graph Networks

Over the past few years, the detection of anomalies in dynamic graph networks has attracted substantial attention worldwide because of its applications in various fields such as cybersecurity, financial fraud detection, and social network analysis. Traditional methods may not be as adaptive to the d...

Full description

Saved in:
Bibliographic Details
Published in2024 International Visualization, Informatics and Technology Conference (IVIT) pp. 200 - 206
Main Authors Mir, Aabid Ahmad, Zuhairi, Megat F., Musa, Shahrulniza, Namoun, Abdallah
Format Conference Proceeding
LanguageEnglish
Published IEEE 07.08.2024
Subjects
Online AccessGet full text
DOI10.1109/IVIT62102.2024.10692372

Cover

Abstract Over the past few years, the detection of anomalies in dynamic graph networks has attracted substantial attention worldwide because of its applications in various fields such as cybersecurity, financial fraud detection, and social network analysis. Traditional methods may not be as adaptive to the dynamic nature of such networks, as it requires more efficient and scalable solutions. To mitigate the issue, a Variational Graph Convolutional Network (V-GCN) is proposed. It is an approach that combines variational autoencoders (VAEs) with graph convolutional networks (GCNs) for anomaly detection in dynamic graph data to enhance anomaly detection. The methodology involves developing a V-GCN architecture that combines the capabilities of VAEs and GCNs, applying an adaptive learning strategy to update model parameters in real time, and carrying out experiments using standard datasets. The experimental results indicate that the anomaly detection performance considerably enhanced using the proposed model. It outperforms the baseline methods, where the V-GCN attains an AUC-ROC of 95%, an average precision of 92%, an F1 score of 91%, and an anomaly score of 94%.
AbstractList Over the past few years, the detection of anomalies in dynamic graph networks has attracted substantial attention worldwide because of its applications in various fields such as cybersecurity, financial fraud detection, and social network analysis. Traditional methods may not be as adaptive to the dynamic nature of such networks, as it requires more efficient and scalable solutions. To mitigate the issue, a Variational Graph Convolutional Network (V-GCN) is proposed. It is an approach that combines variational autoencoders (VAEs) with graph convolutional networks (GCNs) for anomaly detection in dynamic graph data to enhance anomaly detection. The methodology involves developing a V-GCN architecture that combines the capabilities of VAEs and GCNs, applying an adaptive learning strategy to update model parameters in real time, and carrying out experiments using standard datasets. The experimental results indicate that the anomaly detection performance considerably enhanced using the proposed model. It outperforms the baseline methods, where the V-GCN attains an AUC-ROC of 95%, an average precision of 92%, an F1 score of 91%, and an anomaly score of 94%.
Author Musa, Shahrulniza
Mir, Aabid Ahmad
Zuhairi, Megat F.
Namoun, Abdallah
Author_xml – sequence: 1
  givenname: Aabid Ahmad
  surname: Mir
  fullname: Mir, Aabid Ahmad
  email: aabid.mir@s.unikl.edu.my
  organization: Universiti Kuala Lumpur,Malaysian Institute of Information Technology,Malaysia
– sequence: 2
  givenname: Megat F.
  surname: Zuhairi
  fullname: Zuhairi, Megat F.
  email: megatfarez@unikl.edu.my
  organization: Universiti Kuala Lumpur,Malaysian Institute of Information Technology,Malaysia
– sequence: 3
  givenname: Shahrulniza
  surname: Musa
  fullname: Musa, Shahrulniza
  email: shahrulniza@unikl.edu.my
  organization: Universiti Kuala Lumpur,Malaysian Institute of Information Technology,Malaysia
– sequence: 4
  givenname: Abdallah
  surname: Namoun
  fullname: Namoun, Abdallah
  email: anamoun@iu.edu.sa
  organization: Islamic University of Madinah,Faculty of Computer and Information Systems,KSA
BookMark eNo1z0FLwzAYgOEI7qBz_0Awf6D1y5c0Mcey6SwMvZRdR5J-weCalq4o_fce1NN7e-C9Zdd5yMTYg4BSCLCPzbFpNQrAEgFVKUBblAav2MYa-yQrkJVSytwwVXdunNMX8ToPvTsvfEczhTkNmafMd0t2fQp8P7nxg7_R_D1Mn5c7torufKHNX9esfXlut6_F4X3fbOtDkayYiyAJIBqMwcSonamE6aLSHklEh1J31ntpffQeALzTCmUw3nljhKYYvFyz-182EdFpnFLvpuX0_yJ_AGl3RE8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IVIT62102.2024.10692372
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès UT - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350354447
EndPage 206
ExternalDocumentID 10692372
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-c3e00f72fc7ff6a7517df46b2e1fa236d9bb39bfbb000ba6423c7bab7716efcb3
IEDL.DBID RIE
IngestDate Wed Oct 09 06:12:57 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-c3e00f72fc7ff6a7517df46b2e1fa236d9bb39bfbb000ba6423c7bab7716efcb3
PageCount 7
ParticipantIDs ieee_primary_10692372
PublicationCentury 2000
PublicationDate 2024-Aug.-7
PublicationDateYYYYMMDD 2024-08-07
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug.-7
  day: 07
PublicationDecade 2020
PublicationTitle 2024 International Visualization, Informatics and Technology Conference (IVIT)
PublicationTitleAbbrev IVIT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8807867
Snippet Over the past few years, the detection of anomalies in dynamic graph networks has attracted substantial attention worldwide because of its applications in...
SourceID ieee
SourceType Publisher
StartPage 200
SubjectTerms Adaptation models
adaptive learning
Adaptive systems
Analytical models
Anomaly detection
dynamic graph networks
Fraud
Graph convolutional networks
Real-time systems
Scalability
Social networking (online)
Title Adaptive Anomaly Detection in Dynamic Graph Networks
URI https://ieeexplore.ieee.org/document/10692372
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeD7uRJxYm_ycFra9ukiT2KUzfB4WHKbiMveYGhdkO7g_71vqSboiB4CyXQ5kfz8km-7z3GTqUIWURcleQKkABFQ1IpKxKL2TkQLxTGh_OOu6HqP8jbcTleOqtHXxhEjOIzTEMx3uW7mV2EozL6wxXtRzStuOs0z1pnraVmK8-qs8HjYKQCwhD2FTJd1f6RNyWajetNNly9sFWLPKWLBlL78SsW47-_aIt1vz30-P2X7dlma1jvMHnhzDwsX5yg_sU8v_MeNlFqVfNpzXtt8nl-E2JU82Gr_37rstH11eiynyyzIiTTKm8SKzDLvC681d4ro8tcOy8VFJh7UwjlKgBRgYdg3sEQXgirwYAmMEJvQeyyTj2rcY_x0tH2igaEiE5J4gxwUAL1HMpMSgtmn3VDiyfzNu7FZNXYgz-eH7KN0PFRHqePWKd5XeAxmewGTuJQfQILEZcM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeDzIOeVJz42xy8trZNmtijOOemW_FQZbeRlx8wdN3Q7qB_vS_tpigI3koptOmj-eaTft97hJxz5ruImCyIBVgEFAlBJjQLtI0uAXkhUc7vdwxz0Xvkd6N0tExWr3NhrLW1-cyG_rD-l29meuG3yvALF7gekTjjrqPw87RJ11q6tuIou-g_9QvhIQbBL-Hh6vofnVNq4ehukXx1y8Yv8hwuKgj1x69qjP9-pm3S_s7Row9f6rND1my5S_iVUXM_gVHE-ql6eacdW9Vmq5JOStpp2s_TW1-lmuaNA_ytTYruTXHdC5Z9EYJJFleBZjaKnEycls4JJdNYGscFJDZ2KmHCZAAsAwde4EEhYDAtQYFENLJOA9sjrXJW2n1CU4MLLAwJMp3gSBpgIAV8c5ZHnGtQB6TtRzyeN5UvxqvBHv5x_oxs9IrhYDzo5_dHZNMHoTbLyWPSql4X9gQFvILTOmyfJhmaWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Visualization%2C+Informatics+and+Technology+Conference+%28IVIT%29&rft.atitle=Adaptive+Anomaly+Detection+in+Dynamic+Graph+Networks&rft.au=Mir%2C+Aabid+Ahmad&rft.au=Zuhairi%2C+Megat+F.&rft.au=Musa%2C+Shahrulniza&rft.au=Namoun%2C+Abdallah&rft.date=2024-08-07&rft.pub=IEEE&rft.spage=200&rft.epage=206&rft_id=info:doi/10.1109%2FIVIT62102.2024.10692372&rft.externalDocID=10692372