Optimization of Fuel Cell Hybrid System Configuration via Modified Multi-Objective Particle Swarm Algorithm

This paper presents a novel approach to the capacity allocation problem in fuel cell hybrid vehicles. It introduces a multi-objective evolutionary algorithm nested Dynamic Programming (DP) strategy aimed at minimizing both manufacturing and operating costs. The outer loop employs a fast-converging M...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE 25th China Conference on System Simulation Technology and its Application (CCSSTA) pp. 499 - 503
Main Authors Liu, Yingfang, Sun, Zhendong, Chen, Zonghai
Format Conference Proceeding
LanguageEnglish
Published IEEE 21.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a novel approach to the capacity allocation problem in fuel cell hybrid vehicles. It introduces a multi-objective evolutionary algorithm nested Dynamic Programming (DP) strategy aimed at minimizing both manufacturing and operating costs. The outer loop employs a fast-converging Multi-Objective Particle Swarm Optimization (MOPSO) algorithm based on competitive mechanisms for parameter matching, while the inner loop employs DP for energy management. The effectiveness of the proposed method is validated through simulation under specific operating conditions. Comparative analysis with traditional MOPSO demonstrates superior performance in terms of solution set diversity and convergence, affirming the efficacy of the proposed approach.
AbstractList This paper presents a novel approach to the capacity allocation problem in fuel cell hybrid vehicles. It introduces a multi-objective evolutionary algorithm nested Dynamic Programming (DP) strategy aimed at minimizing both manufacturing and operating costs. The outer loop employs a fast-converging Multi-Objective Particle Swarm Optimization (MOPSO) algorithm based on competitive mechanisms for parameter matching, while the inner loop employs DP for energy management. The effectiveness of the proposed method is validated through simulation under specific operating conditions. Comparative analysis with traditional MOPSO demonstrates superior performance in terms of solution set diversity and convergence, affirming the efficacy of the proposed approach.
Author Chen, Zonghai
Liu, Yingfang
Sun, Zhendong
Author_xml – sequence: 1
  givenname: Yingfang
  surname: Liu
  fullname: Liu, Yingfang
  email: liuyingfang@mail.ustc.edu.cn
  organization: University of Science and Technology of China,Department of Automation,Hefei,China
– sequence: 2
  givenname: Zhendong
  surname: Sun
  fullname: Sun, Zhendong
  email: szd1996@ustc.edu.cn
  organization: University of Science and Technology of China,Department of Automation,Hefei,China
– sequence: 3
  givenname: Zonghai
  surname: Chen
  fullname: Chen, Zonghai
  email: chenzh@ustc.edu.cn
  organization: University of Science and Technology of China,Department of Automation,Hefei,China
BookMark eNo1kM1OwkAURsdEF4q8gYvxAYrz0952lqQRMYHUpOzJTOcWr05bUgYMPr0m6Oo7i5Oz-O7YdT_0yNijFDMphXkqy7rezEEJAzMlVDqTAowstLliU5ObQmdCA4AQt-yz2kfq6NtGGno-tHxxxMBLDIEvz24kz-vzIWLHy6FvaXccL-KJLF8PnlpCz9fHECmp3Ac2kU7I3-wYqQnI6y87dnwedsNI8b27ZzetDQec_u2EbRbPm3KZrKqX13K-SsjImDjvfQMIuUKFHrTPUxSZB1dom7pf0IUTaSayXIFHUNA0VkKhW-tEnjupJ-zhkiVE3O5H6ux43v5foH8AsJpYtg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCSSTA62096.2024.10691839
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350366600
EndPage 503
ExternalDocumentID 10691839
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-bdddc6e672e2ed63d74e05d6b83a4b5d638b04505726de626cca1683fab077b13
IEDL.DBID RIE
IngestDate Wed Oct 09 06:12:58 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-bdddc6e672e2ed63d74e05d6b83a4b5d638b04505726de626cca1683fab077b13
PageCount 5
ParticipantIDs ieee_primary_10691839
PublicationCentury 2000
PublicationDate 2024-July-21
PublicationDateYYYYMMDD 2024-07-21
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-21
  day: 21
PublicationDecade 2020
PublicationTitle 2024 IEEE 25th China Conference on System Simulation Technology and its Application (CCSSTA)
PublicationTitleAbbrev CCSSTA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.879734
Snippet This paper presents a novel approach to the capacity allocation problem in fuel cell hybrid vehicles. It introduces a multi-objective evolutionary algorithm...
SourceID ieee
SourceType Publisher
StartPage 499
SubjectTerms configuration optimisation
Convergence
Costs
Energy management
fuel cell hybrid power systems
Fuel cells
Manufacturing
Mechanical power transmission
MOPSO based on competitive mechanisms
Optimization
Particle swarm optimization
Resource management
Systems simulation
Title Optimization of Fuel Cell Hybrid System Configuration via Modified Multi-Objective Particle Swarm Algorithm
URI https://ieeexplore.ieee.org/document/10691839
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1uD-KTihO_ieBraz_StH0cxTEEt8Em7G0ky82s61YZraK_3pu2UxQE30Ipaclpcs9Jc-4l5MZzNYoGrS2hmbaY5I4VSaVQpUgWm5KrDjMG54cB7z-y-2kwbczqlRcGAKrDZ2CbZvUvX-Xz0myV4QznsYnoLdJC5VabtXbJdZM38zZJxuNJl3vIylH4ecze3v-jckoVOHr7ZLB9ZH1eZGmXhbTnH7-yMf77nQ5I59ujR0df0eeQ7MD6iCyHuAKsGmslzTXtlZDRBLKM9t-NN4vWGcqp6SRdlDX89DUV9CFXqUY-SitLrjWUz_VSSEfNx0XHb2Kzot1skW_S4mnVIZPe3STpW005BSuN3cJCBNScAw898EBxX4UMnEBxGfmCSWz4kUR-h_zN4wpQ5yC2Lo98LaQThtL1j0l7na_hhNAQOZfwHSYkIixRhwYQKqSOIgAFceieko4ZqNlLnTBjth2jsz-un5M9g5fZMvXcC9IuNiVcYqwv5FWF8SfWtKxZ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QX1SceLdCL629pKm7eMojqq7wSrsbTTLqdZdKqNV9Nd70naKguBbKPRCvjTfd5J85xByZZkJBg1JosUJSzQmuKF5QkqMUgTzVclVgymDc7fHwwd2N3JGtVm99MIAQHn4DHTVLPfyZTYp1FIZ_uHcV4y-TjaQ-B2rsmttkss6c-Z1EAyHUYtbqMsx9LOYvrrjR-2UkjraO6S3eml1YmSqF7nQJx-_8jH--6t2SfPbpUcHX_yzR9ZgsU-mfZwD5rW5kmYJbRcwowHMZjR8V-4sWuUop-oh6WNRDQD6msa0m8k0QUVKS1Ou1hfP1WRIB_XwosO3eDmnrdljtkzzp3mTRO2bKAi1uqCClvpmriEGcsKBuxZYILktXQaGI7nw7JgJbNieQIWHCs7iEjDSQXRN7tlJLAzXFaZ9QBqLbAGHhLqoumLbYLFAjAVGog64EsVj7IAE3zWPSFN11PilSpkxXvXR8R_XL8hWGHU7485t7_6EbCvs1AKqZZ6SRr4s4AyZPxfnJd6fAqWvow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+25th+China+Conference+on+System+Simulation+Technology+and+its+Application+%28CCSSTA%29&rft.atitle=Optimization+of+Fuel+Cell+Hybrid+System+Configuration+via+Modified+Multi-Objective+Particle+Swarm+Algorithm&rft.au=Liu%2C+Yingfang&rft.au=Sun%2C+Zhendong&rft.au=Chen%2C+Zonghai&rft.date=2024-07-21&rft.pub=IEEE&rft.spage=499&rft.epage=503&rft_id=info:doi/10.1109%2FCCSSTA62096.2024.10691839&rft.externalDocID=10691839