Optimization of Fuel Cell Hybrid System Configuration via Modified Multi-Objective Particle Swarm Algorithm
This paper presents a novel approach to the capacity allocation problem in fuel cell hybrid vehicles. It introduces a multi-objective evolutionary algorithm nested Dynamic Programming (DP) strategy aimed at minimizing both manufacturing and operating costs. The outer loop employs a fast-converging M...
Saved in:
Published in | 2024 IEEE 25th China Conference on System Simulation Technology and its Application (CCSSTA) pp. 499 - 503 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
21.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a novel approach to the capacity allocation problem in fuel cell hybrid vehicles. It introduces a multi-objective evolutionary algorithm nested Dynamic Programming (DP) strategy aimed at minimizing both manufacturing and operating costs. The outer loop employs a fast-converging Multi-Objective Particle Swarm Optimization (MOPSO) algorithm based on competitive mechanisms for parameter matching, while the inner loop employs DP for energy management. The effectiveness of the proposed method is validated through simulation under specific operating conditions. Comparative analysis with traditional MOPSO demonstrates superior performance in terms of solution set diversity and convergence, affirming the efficacy of the proposed approach. |
---|---|
AbstractList | This paper presents a novel approach to the capacity allocation problem in fuel cell hybrid vehicles. It introduces a multi-objective evolutionary algorithm nested Dynamic Programming (DP) strategy aimed at minimizing both manufacturing and operating costs. The outer loop employs a fast-converging Multi-Objective Particle Swarm Optimization (MOPSO) algorithm based on competitive mechanisms for parameter matching, while the inner loop employs DP for energy management. The effectiveness of the proposed method is validated through simulation under specific operating conditions. Comparative analysis with traditional MOPSO demonstrates superior performance in terms of solution set diversity and convergence, affirming the efficacy of the proposed approach. |
Author | Chen, Zonghai Liu, Yingfang Sun, Zhendong |
Author_xml | – sequence: 1 givenname: Yingfang surname: Liu fullname: Liu, Yingfang email: liuyingfang@mail.ustc.edu.cn organization: University of Science and Technology of China,Department of Automation,Hefei,China – sequence: 2 givenname: Zhendong surname: Sun fullname: Sun, Zhendong email: szd1996@ustc.edu.cn organization: University of Science and Technology of China,Department of Automation,Hefei,China – sequence: 3 givenname: Zonghai surname: Chen fullname: Chen, Zonghai email: chenzh@ustc.edu.cn organization: University of Science and Technology of China,Department of Automation,Hefei,China |
BookMark | eNo1kM1OwkAURsdEF4q8gYvxAYrz0952lqQRMYHUpOzJTOcWr05bUgYMPr0m6Oo7i5Oz-O7YdT_0yNijFDMphXkqy7rezEEJAzMlVDqTAowstLliU5ObQmdCA4AQt-yz2kfq6NtGGno-tHxxxMBLDIEvz24kz-vzIWLHy6FvaXccL-KJLF8PnlpCz9fHECmp3Ac2kU7I3-wYqQnI6y87dnwedsNI8b27ZzetDQec_u2EbRbPm3KZrKqX13K-SsjImDjvfQMIuUKFHrTPUxSZB1dom7pf0IUTaSayXIFHUNA0VkKhW-tEnjupJ-zhkiVE3O5H6ux43v5foH8AsJpYtg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CCSSTA62096.2024.10691839 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350366600 |
EndPage | 503 |
ExternalDocumentID | 10691839 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i91t-bdddc6e672e2ed63d74e05d6b83a4b5d638b04505726de626cca1683fab077b13 |
IEDL.DBID | RIE |
IngestDate | Wed Oct 09 06:12:58 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-bdddc6e672e2ed63d74e05d6b83a4b5d638b04505726de626cca1683fab077b13 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10691839 |
PublicationCentury | 2000 |
PublicationDate | 2024-July-21 |
PublicationDateYYYYMMDD | 2024-07-21 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-21 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE 25th China Conference on System Simulation Technology and its Application (CCSSTA) |
PublicationTitleAbbrev | CCSSTA |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.879734 |
Snippet | This paper presents a novel approach to the capacity allocation problem in fuel cell hybrid vehicles. It introduces a multi-objective evolutionary algorithm... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 499 |
SubjectTerms | configuration optimisation Convergence Costs Energy management fuel cell hybrid power systems Fuel cells Manufacturing Mechanical power transmission MOPSO based on competitive mechanisms Optimization Particle swarm optimization Resource management Systems simulation |
Title | Optimization of Fuel Cell Hybrid System Configuration via Modified Multi-Objective Particle Swarm Algorithm |
URI | https://ieeexplore.ieee.org/document/10691839 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1uD-KTihO_ieBraz_StH0cxTEEt8Em7G0ky82s61YZraK_3pu2UxQE30Ipaclpcs9Jc-4l5MZzNYoGrS2hmbaY5I4VSaVQpUgWm5KrDjMG54cB7z-y-2kwbczqlRcGAKrDZ2CbZvUvX-Xz0myV4QznsYnoLdJC5VabtXbJdZM38zZJxuNJl3vIylH4ecze3v-jckoVOHr7ZLB9ZH1eZGmXhbTnH7-yMf77nQ5I59ujR0df0eeQ7MD6iCyHuAKsGmslzTXtlZDRBLKM9t-NN4vWGcqp6SRdlDX89DUV9CFXqUY-SitLrjWUz_VSSEfNx0XHb2Kzot1skW_S4mnVIZPe3STpW005BSuN3cJCBNScAw898EBxX4UMnEBxGfmCSWz4kUR-h_zN4wpQ5yC2Lo98LaQThtL1j0l7na_hhNAQOZfwHSYkIixRhwYQKqSOIgAFceieko4ZqNlLnTBjth2jsz-un5M9g5fZMvXcC9IuNiVcYqwv5FWF8SfWtKxZ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QX1SceLdCL629pKm7eMojqq7wSrsbTTLqdZdKqNV9Nd70naKguBbKPRCvjTfd5J85xByZZkJBg1JosUJSzQmuKF5QkqMUgTzVclVgymDc7fHwwd2N3JGtVm99MIAQHn4DHTVLPfyZTYp1FIZ_uHcV4y-TjaQ-B2rsmttkss6c-Z1EAyHUYtbqMsx9LOYvrrjR-2UkjraO6S3eml1YmSqF7nQJx-_8jH--6t2SfPbpUcHX_yzR9ZgsU-mfZwD5rW5kmYJbRcwowHMZjR8V-4sWuUop-oh6WNRDQD6msa0m8k0QUVKS1Ou1hfP1WRIB_XwosO3eDmnrdljtkzzp3mTRO2bKAi1uqCClvpmriEGcsKBuxZYILktXQaGI7nw7JgJbNieQIWHCs7iEjDSQXRN7tlJLAzXFaZ9QBqLbAGHhLqoumLbYLFAjAVGog64EsVj7IAE3zWPSFN11PilSpkxXvXR8R_XL8hWGHU7485t7_6EbCvs1AKqZZ6SRr4s4AyZPxfnJd6fAqWvow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+25th+China+Conference+on+System+Simulation+Technology+and+its+Application+%28CCSSTA%29&rft.atitle=Optimization+of+Fuel+Cell+Hybrid+System+Configuration+via+Modified+Multi-Objective+Particle+Swarm+Algorithm&rft.au=Liu%2C+Yingfang&rft.au=Sun%2C+Zhendong&rft.au=Chen%2C+Zonghai&rft.date=2024-07-21&rft.pub=IEEE&rft.spage=499&rft.epage=503&rft_id=info:doi/10.1109%2FCCSSTA62096.2024.10691839&rft.externalDocID=10691839 |