Analysis of Credit Card Client Attrition using Machine Learning

Churn Analysis on credit cards is the study of the phenomenon of consumers quitting a particular business credit card service. Credit card firms need to be able to predict customer churn in order to identify consumers who want to leave and ensure preventive measures for retaining the customers. Cons...

Full description

Saved in:
Bibliographic Details
Published in2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN) pp. 446 - 450
Main Authors Nandini, D., Kumar, M.Dilip, Jamal, K., Kumar, N.Bharath, Mannem, Kiran, Suneetha, M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 03.07.2024
Subjects
Online AccessGet full text
DOI10.1109/ICIPCN63822.2024.00079

Cover

Abstract Churn Analysis on credit cards is the study of the phenomenon of consumers quitting a particular business credit card service. Credit card firms need to be able to predict customer churn in order to identify consumers who want to leave and ensure preventive measures for retaining the customers. Constructing a model capable of accurately identifying the clients who are most likely to stop using Credit Card is the main objective of this project. In order to make predictions, the study collects and analyzes user data from Kaggle.Machine learning techniques like K-Nearest Neighbour, XGBoost,Logistic Regression, DT and Hybrid Models integrating LR and KNN, LR and DT are trained to find patterns and correlations that point to client attrition.
AbstractList Churn Analysis on credit cards is the study of the phenomenon of consumers quitting a particular business credit card service. Credit card firms need to be able to predict customer churn in order to identify consumers who want to leave and ensure preventive measures for retaining the customers. Constructing a model capable of accurately identifying the clients who are most likely to stop using Credit Card is the main objective of this project. In order to make predictions, the study collects and analyzes user data from Kaggle.Machine learning techniques like K-Nearest Neighbour, XGBoost,Logistic Regression, DT and Hybrid Models integrating LR and KNN, LR and DT are trained to find patterns and correlations that point to client attrition.
Author Kumar, N.Bharath
Mannem, Kiran
Jamal, K.
Nandini, D.
Kumar, M.Dilip
Suneetha, M.
Author_xml – sequence: 1
  givenname: D.
  surname: Nandini
  fullname: Nandini, D.
  email: dasarinandini14@gmail.com
  organization: Gokaraju Rangaraju Institute of Engineering and Technology,dept.of ECE,Hyderabad,Telangana,India
– sequence: 2
  givenname: M.Dilip
  surname: Kumar
  fullname: Kumar, M.Dilip
  email: dilipkumar.manapadu@gmail.com
  organization: Gokaraju Rangaraju Institute of Engineering and Technology,dept.of ECE,Hyderabad,Telangana,India
– sequence: 3
  givenname: K.
  surname: Jamal
  fullname: Jamal, K.
  email: kjamal24@gmail.com
  organization: Gokaraju Rangaraju Institute of Engineering and Technology,dept.of ECE,Hyderabad,Telangana,India
– sequence: 4
  givenname: N.Bharath
  surname: Kumar
  fullname: Kumar, N.Bharath
  email: bharathkumarnallabariki@gmail.com
  organization: Gokaraju Rangaraju Institute of Engineering and Technology,dept.of ECE,Hyderabad,Telangana,India
– sequence: 5
  givenname: Kiran
  surname: Mannem
  fullname: Mannem, Kiran
  email: kiranmannem14@gmail.com
  organization: Gokaraju Rangaraju Institute of Engineering and Technology,dept.of ECE,Hyderabad,Telangana,India
– sequence: 6
  givenname: M.
  surname: Suneetha
  fullname: Suneetha, M.
  email: Suneetha645@gmail.com
  organization: Gokaraju Rangaraju Institute of Engineering and Technology,dept.of ECE,Hyderabad,Telangana,India
BookMark eNotjctKxDAUQCPoQsf5A5H8wNR7k7ZpVlKCj0J9LGY_3Da3GqippHExf--Arg6cxTlX4jwukYW4RSgQwd51rnt3r7VulCoUqLIAAGPPxNYa2-gKdG3Q4KW4byPNxzWscpmkS-xDlo6Sl24OHLNsc04hhyXKnzXED_lC42eILHumFE_iWlxMNK-8_edG7B8f9u551789da7td8Fi3g3E1eBPa2WtQstEo1E4AEx6IlMDMWI1-rEcuLKaPDWl0eOA3ivLOIHeiJu_bGDmw3cKX5SOB4S6hqZU-heaP0eq
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIPCN63822.2024.00079
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350367171
EndPage 450
ExternalDocumentID 10660842
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-bae5bd979299219eaac721b00f3fa760ae115cdc4be593ada8473cb1dd29e1f03
IEDL.DBID RIE
IngestDate Wed Sep 18 05:50:16 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-bae5bd979299219eaac721b00f3fa760ae115cdc4be593ada8473cb1dd29e1f03
PageCount 5
ParticipantIDs ieee_primary_10660842
PublicationCentury 2000
PublicationDate 2024-July-3
PublicationDateYYYYMMDD 2024-07-03
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-3
  day: 03
PublicationDecade 2020
PublicationTitle 2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN)
PublicationTitleAbbrev ICIPCN
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8777419
Snippet Churn Analysis on credit cards is the study of the phenomenon of consumers quitting a particular business credit card service. Credit card firms need to be...
SourceID ieee
SourceType Publisher
StartPage 446
SubjectTerms Correlation
Credit cards
Data models
Decision Tree(DT)
Image processing
KNN
Logistic Regression(LR)
Machine learning
Nearest neighbor methods
Predictive models
XGBoost
Title Analysis of Credit Card Client Attrition using Machine Learning
URI https://ieeexplore.ieee.org/document/10660842
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kycVK36Tg9fO5qPtchIpjk1Y2WHCbiMfL0OUTUZ78a_3JescCIK30EDaJC95ry-_3y-E3Cup7cBwmQ4wGk1lWbKQaNIpL4sMXCmtiGI6k7oYvcqXeT7vyOqRCwMAEXwG_VCMZ_lubduQKsMVXhTZQOKOe4h2tiVrdaxflqmHcTWeVjUaFA8MKx5ksbMI0dpfmxK9xvCY1Lv3bcEi7_22MX379UuK8d8fdEKSPUGPTn9czyk5gNUZedwJjNC1p9UGqxpaoQHQ6iOQHulT0wnv0wB2X9JJxFEC7SRWlwmZDZ9n1Sjt7kdI3xRrUqMhN06VGOAo3HdAa4u_c7iMvPAah1oDRnvWWWkgV0I7jY5IWMOc4wqYz8Q56a3WK7ggNJMOQxOVewNMYpOmNAy8EsA5eCv5JUlC5xefWwWMxa7fV388vyZHYQIirFXckF6zaeEWnXdj7uKkfQMAepp8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA6iBz2pOPHbHLx2Nh9tl5NIcWy6lR0m7Dby8WaIssnoLv5632SdA0HwFhJomubjeZs8zxNC7pTUtmO4TDoYjSayKFjYaNIJL_IUXCGtiGY6wyrvvcrnSTZpxOpRCwMAkXwG7ZCMZ_luYVdhqwxneJ6nHYkr7h4Cv8zWcq1G98tSdd8v-6OywiHFg8aKB2PsNJK0thenRNzoHpJqU-OaLvLeXtWmbb9-mTH--5WOSGsr0aOjH_A5JjswPyEPG4sRuvC0XGJRTUscArT8CLJH-lg31vs00N1ndBiZlEAbk9VZi4y7T-OylzQ3JCRvitWJ0ZAZpwoMcRSuPKC1xR86nEheeI0fWwPGe9ZZaSBTQjuNUCSsYc5xBcyn4pTszhdzOCM0lQ6DE5V5A0ziI01hGHglgHPwVvJz0gqNn36uPTCmm3Zf_JF_S_Z74-FgOuhXL5fkIHRGJLmKK7JbL1dwjVBem5vYgd9HzJ3J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+5th+International+Conference+on+Image+Processing+and+Capsule+Networks+%28ICIPCN%29&rft.atitle=Analysis+of+Credit+Card+Client+Attrition+using+Machine+Learning&rft.au=Nandini%2C+D.&rft.au=Kumar%2C+M.Dilip&rft.au=Jamal%2C+K.&rft.au=Kumar%2C+N.Bharath&rft.date=2024-07-03&rft.pub=IEEE&rft.spage=446&rft.epage=450&rft_id=info:doi/10.1109%2FICIPCN63822.2024.00079&rft.externalDocID=10660842