Analysis of Credit Card Client Attrition using Machine Learning
Churn Analysis on credit cards is the study of the phenomenon of consumers quitting a particular business credit card service. Credit card firms need to be able to predict customer churn in order to identify consumers who want to leave and ensure preventive measures for retaining the customers. Cons...
Saved in:
Published in | 2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN) pp. 446 - 450 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
03.07.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICIPCN63822.2024.00079 |
Cover
Abstract | Churn Analysis on credit cards is the study of the phenomenon of consumers quitting a particular business credit card service. Credit card firms need to be able to predict customer churn in order to identify consumers who want to leave and ensure preventive measures for retaining the customers. Constructing a model capable of accurately identifying the clients who are most likely to stop using Credit Card is the main objective of this project. In order to make predictions, the study collects and analyzes user data from Kaggle.Machine learning techniques like K-Nearest Neighbour, XGBoost,Logistic Regression, DT and Hybrid Models integrating LR and KNN, LR and DT are trained to find patterns and correlations that point to client attrition. |
---|---|
AbstractList | Churn Analysis on credit cards is the study of the phenomenon of consumers quitting a particular business credit card service. Credit card firms need to be able to predict customer churn in order to identify consumers who want to leave and ensure preventive measures for retaining the customers. Constructing a model capable of accurately identifying the clients who are most likely to stop using Credit Card is the main objective of this project. In order to make predictions, the study collects and analyzes user data from Kaggle.Machine learning techniques like K-Nearest Neighbour, XGBoost,Logistic Regression, DT and Hybrid Models integrating LR and KNN, LR and DT are trained to find patterns and correlations that point to client attrition. |
Author | Kumar, N.Bharath Mannem, Kiran Jamal, K. Nandini, D. Kumar, M.Dilip Suneetha, M. |
Author_xml | – sequence: 1 givenname: D. surname: Nandini fullname: Nandini, D. email: dasarinandini14@gmail.com organization: Gokaraju Rangaraju Institute of Engineering and Technology,dept.of ECE,Hyderabad,Telangana,India – sequence: 2 givenname: M.Dilip surname: Kumar fullname: Kumar, M.Dilip email: dilipkumar.manapadu@gmail.com organization: Gokaraju Rangaraju Institute of Engineering and Technology,dept.of ECE,Hyderabad,Telangana,India – sequence: 3 givenname: K. surname: Jamal fullname: Jamal, K. email: kjamal24@gmail.com organization: Gokaraju Rangaraju Institute of Engineering and Technology,dept.of ECE,Hyderabad,Telangana,India – sequence: 4 givenname: N.Bharath surname: Kumar fullname: Kumar, N.Bharath email: bharathkumarnallabariki@gmail.com organization: Gokaraju Rangaraju Institute of Engineering and Technology,dept.of ECE,Hyderabad,Telangana,India – sequence: 5 givenname: Kiran surname: Mannem fullname: Mannem, Kiran email: kiranmannem14@gmail.com organization: Gokaraju Rangaraju Institute of Engineering and Technology,dept.of ECE,Hyderabad,Telangana,India – sequence: 6 givenname: M. surname: Suneetha fullname: Suneetha, M. email: Suneetha645@gmail.com organization: Gokaraju Rangaraju Institute of Engineering and Technology,dept.of ECE,Hyderabad,Telangana,India |
BookMark | eNotjctKxDAUQCPoQsf5A5H8wNR7k7ZpVlKCj0J9LGY_3Da3GqippHExf--Arg6cxTlX4jwukYW4RSgQwd51rnt3r7VulCoUqLIAAGPPxNYa2-gKdG3Q4KW4byPNxzWscpmkS-xDlo6Sl24OHLNsc04hhyXKnzXED_lC42eILHumFE_iWlxMNK-8_edG7B8f9u551789da7td8Fi3g3E1eBPa2WtQstEo1E4AEx6IlMDMWI1-rEcuLKaPDWl0eOA3ivLOIHeiJu_bGDmw3cKX5SOB4S6hqZU-heaP0eq |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICIPCN63822.2024.00079 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350367171 |
EndPage | 450 |
ExternalDocumentID | 10660842 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i91t-bae5bd979299219eaac721b00f3fa760ae115cdc4be593ada8473cb1dd29e1f03 |
IEDL.DBID | RIE |
IngestDate | Wed Sep 18 05:50:16 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-bae5bd979299219eaac721b00f3fa760ae115cdc4be593ada8473cb1dd29e1f03 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10660842 |
PublicationCentury | 2000 |
PublicationDate | 2024-July-3 |
PublicationDateYYYYMMDD | 2024-07-03 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-3 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | 2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN) |
PublicationTitleAbbrev | ICIPCN |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8777419 |
Snippet | Churn Analysis on credit cards is the study of the phenomenon of consumers quitting a particular business credit card service. Credit card firms need to be... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 446 |
SubjectTerms | Correlation Credit cards Data models Decision Tree(DT) Image processing KNN Logistic Regression(LR) Machine learning Nearest neighbor methods Predictive models XGBoost |
Title | Analysis of Credit Card Client Attrition using Machine Learning |
URI | https://ieeexplore.ieee.org/document/10660842 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kycVK36Tg9fO5qPtchIpjk1Y2WHCbiMfL0OUTUZ78a_3JescCIK30EDaJC95ry-_3y-E3Cup7cBwmQ4wGk1lWbKQaNIpL4sMXCmtiGI6k7oYvcqXeT7vyOqRCwMAEXwG_VCMZ_lubduQKsMVXhTZQOKOe4h2tiVrdaxflqmHcTWeVjUaFA8MKx5ksbMI0dpfmxK9xvCY1Lv3bcEi7_22MX379UuK8d8fdEKSPUGPTn9czyk5gNUZedwJjNC1p9UGqxpaoQHQ6iOQHulT0wnv0wB2X9JJxFEC7SRWlwmZDZ9n1Sjt7kdI3xRrUqMhN06VGOAo3HdAa4u_c7iMvPAah1oDRnvWWWkgV0I7jY5IWMOc4wqYz8Q56a3WK7ggNJMOQxOVewNMYpOmNAy8EsA5eCv5JUlC5xefWwWMxa7fV388vyZHYQIirFXckF6zaeEWnXdj7uKkfQMAepp8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA6iBz2pOPHbHLx2Nh9tl5NIcWy6lR0m7Dby8WaIssnoLv5632SdA0HwFhJomubjeZs8zxNC7pTUtmO4TDoYjSayKFjYaNIJL_IUXCGtiGY6wyrvvcrnSTZpxOpRCwMAkXwG7ZCMZ_luYVdhqwxneJ6nHYkr7h4Cv8zWcq1G98tSdd8v-6OywiHFg8aKB2PsNJK0thenRNzoHpJqU-OaLvLeXtWmbb9-mTH--5WOSGsr0aOjH_A5JjswPyEPG4sRuvC0XGJRTUscArT8CLJH-lg31vs00N1ndBiZlEAbk9VZi4y7T-OylzQ3JCRvitWJ0ZAZpwoMcRSuPKC1xR86nEheeI0fWwPGe9ZZaSBTQjuNUCSsYc5xBcyn4pTszhdzOCM0lQ6DE5V5A0ziI01hGHglgHPwVvJz0gqNn36uPTCmm3Zf_JF_S_Z74-FgOuhXL5fkIHRGJLmKK7JbL1dwjVBem5vYgd9HzJ3J |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+5th+International+Conference+on+Image+Processing+and+Capsule+Networks+%28ICIPCN%29&rft.atitle=Analysis+of+Credit+Card+Client+Attrition+using+Machine+Learning&rft.au=Nandini%2C+D.&rft.au=Kumar%2C+M.Dilip&rft.au=Jamal%2C+K.&rft.au=Kumar%2C+N.Bharath&rft.date=2024-07-03&rft.pub=IEEE&rft.spage=446&rft.epage=450&rft_id=info:doi/10.1109%2FICIPCN63822.2024.00079&rft.externalDocID=10660842 |