Enhancing Autism Spectrum Disorder Identification: A Machine Learning Approach Using CatBoost
Autism is a complex neurodevelopment condition that affects an individual's behavior, communication, and social interaction. Identification is a critical endeavor in health care, necessitating accurate and efficient diagnostic methodologies, early identification is pivotal for timely interventi...
Saved in:
Published in | 2024 International Conference on Innovation and Novelty in Engineering and Technology (INNOVA) Vol. I; pp. 1 - 5 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
20.12.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/INNOVA63080.2024.10847025 |
Cover
Abstract | Autism is a complex neurodevelopment condition that affects an individual's behavior, communication, and social interaction. Identification is a critical endeavor in health care, necessitating accurate and efficient diagnostic methodologies, early identification is pivotal for timely intervention and improved outcomes in affected individuals. This paper investigates the use of machine learning algorithms, specifically CatBoost, for Autism trait identification using heterogeneous datasets from toddlers, children, adolescents, and adults. The research investigates the performance of CatBoost in handling mixed data types, including categorical features and missing values, without extensive preprocessing. Utilizing gradient boosting on decision trees, CatBoost demonstrates its efficacy in capturing complex relationships between features, facilitating high predictive accuracy in autism identification. Through rigorous evaluation metrics such as accuracy, precision, recall, and Fl score, the designed system achieves a precise accuracy of 92% for adult datasets and 88% for child and adolescent datasets. This study delineates CatBoost's robustness across diverse age groups, providing insightful information on its applicability for Autism Spectrum Disorder diagnosis in the healthcare domain. |
---|---|
AbstractList | Autism is a complex neurodevelopment condition that affects an individual's behavior, communication, and social interaction. Identification is a critical endeavor in health care, necessitating accurate and efficient diagnostic methodologies, early identification is pivotal for timely intervention and improved outcomes in affected individuals. This paper investigates the use of machine learning algorithms, specifically CatBoost, for Autism trait identification using heterogeneous datasets from toddlers, children, adolescents, and adults. The research investigates the performance of CatBoost in handling mixed data types, including categorical features and missing values, without extensive preprocessing. Utilizing gradient boosting on decision trees, CatBoost demonstrates its efficacy in capturing complex relationships between features, facilitating high predictive accuracy in autism identification. Through rigorous evaluation metrics such as accuracy, precision, recall, and Fl score, the designed system achieves a precise accuracy of 92% for adult datasets and 88% for child and adolescent datasets. This study delineates CatBoost's robustness across diverse age groups, providing insightful information on its applicability for Autism Spectrum Disorder diagnosis in the healthcare domain. |
Author | Kaliwal, Rohit B M, Dhananjaya. G. Hukkeri, Geetabai S Patil, Minal Goudar, R.H. Rathod, Vijayalaxmi N |
Author_xml | – sequence: 1 givenname: Vijayalaxmi N orcidid: 0009-0006-3232-3324 surname: Rathod fullname: Rathod, Vijayalaxmi N organization: Visvesvaraya Technological University,Dept of Computer Science and Engineering,Belagavi,Karnataka,India – sequence: 2 givenname: R.H. orcidid: 0000-0002-4590-7744 surname: Goudar fullname: Goudar, R.H. organization: Visvesvaraya Technological University,Dept of Computer Science and Engineering,Belagavi,Karnataka,India – sequence: 3 givenname: Dhananjaya. G. orcidid: 0000-0002-8492-335X surname: M fullname: M, Dhananjaya. G. organization: Visvesvaraya Technological University,Dept of Computer Science and Engineering,Belagavi,Karnataka,India – sequence: 4 givenname: Minal orcidid: 0009-0008-1124-8892 surname: Patil fullname: Patil, Minal organization: Visvesvaraya Technological University,Dept of Computer Science and Engineering,Belagavi,Karnataka,India – sequence: 5 givenname: Geetabai S surname: Hukkeri fullname: Hukkeri, Geetabai S email: geetabai.hukkeri@manipal.edu organization: Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education,Dept of Computer Science and Engineering,India – sequence: 6 givenname: Rohit B orcidid: 0000-0001-8342-2126 surname: Kaliwal fullname: Kaliwal, Rohit B organization: Visvesvaraya Technological University,Dept of Computer Science and Engineering,Belagavi,Karnataka,India |
BookMark | eNo1T81OwzAYCxIcYOwNOIQHaEmapE24lbJBpbIdBtzQlKZfWSSaVGl24O0pfyfLlm3ZF-jUeQcIXVOSUkrUTb3ZbF_LnBFJ0oxkPKVE8oJk4gQtVaEkY1QQQRk_R28rd9DOWPeOy2O004B3I5gYjgO-t5MPHQRcd-Ci7a3R0Xp3i0v8pM3BOsAN6OB-suMY_Czil-mbVjreeT_FS3TW648Jln-4QLv16rl6TJrtQ12VTWIVjYkqOtDzREWMkKJt-153mgDjVJFcZkbmWauE7DkrlMk5Bd1CIU07Ow3vKFugq99WCwD7MdhBh8_9_2f2BZnNUwk |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/INNOVA63080.2024.10847025 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798331505134 |
EndPage | 5 |
ExternalDocumentID | 10847025 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i91t-97dea10890c585bbffada0e34190682c862b958f4379c641eabe78cbbbfc4d13 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 29 10:31:02 EST 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-97dea10890c585bbffada0e34190682c862b958f4379c641eabe78cbbbfc4d13 |
ORCID | 0000-0002-4590-7744 0009-0008-1124-8892 0000-0002-8492-335X 0009-0006-3232-3324 0000-0001-8342-2126 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10847025 |
PublicationCentury | 2000 |
PublicationDate | 2024-Dec.-20 |
PublicationDateYYYYMMDD | 2024-12-20 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-Dec.-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | 2024 International Conference on Innovation and Novelty in Engineering and Technology (INNOVA) |
PublicationTitleAbbrev | INNOVA |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8957924 |
Snippet | Autism is a complex neurodevelopment condition that affects an individual's behavior, communication, and social interaction. Identification is a critical... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Autism Boosting CatBoost Convolutional Neural Network Data models Decision trees DNNPC Machine learning Machine learning algorithms Overfitting Pediatrics Robustness SVM Technological innovation |
Title | Enhancing Autism Spectrum Disorder Identification: A Machine Learning Approach Using CatBoost |
URI | https://ieeexplore.ieee.org/document/10847025 |
Volume | I |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sD-JJxYpvVvCamKS7eXirpaUKRsEHvUjZx6yKNBGbXvz1zm4SRUHwFsKGXWYfM7P5vm8IOQGTgmJJ5vE0izymQHsCHZEnJJNcpyGDGm2Rx5N7djnl04as7rgwAODAZ-DbR_cvX5dqaa_KcIfjWYpOukM6uM5qstYqOW50M08v8vz6YRD3MQjCxC9iftv-R-UU5zjG6yRvu6zxIq_-spK--vilxvjvMW2Q3jdHj958eZ9NsgLFFnkcFc9WQKN4ogNcUYs5tfXlq_flnLYym7Sm5prmru6MDuiVA1QCbbRW8dtGaJw6QAEdiuq8LBdVj9yOR3fDidcUUPBesrDyskSDwPFlgcKkQEpjhBYBWAW3IE4jhcmMzHhqrCShilkIQkKSKoktFdNhf5t0i7KAHUIxLow1xw2rACMug1mS4aoPIMBEikfpLulZy8zeaoWMWWuUvT_e75M1O0EWFhIFB6SLdoBDdO6VPHKT-gmxEabU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA06QX1SceK3EXxt7UfStb7NsbHpVgWn7EVGkt6oyFpx3Yu_3pt-KAqCb6U0NNw0PbnJOecScgY6BMVakcXDyLOYgsQSCESWkEzyJHQZlGyLOOjfs6sJn1Ri9UILAwAF-Qxsc1mc5SeZWpitMpzh-C9FkF4mKwj8jJdyrVVyWjlnng_i-OahHfi4DMLUz2N23eJH7ZQCOnobJK5fWjJGXu1FLm318cuP8d-92iTNb5Uevf3Cny2yBOk2eeymz8ZCI32ibfym5jNqKszn74sZrY02aSnO1dVu3QVt01FBqQRaua1i28pqnBaUAtoR-WWWzfMmuet1x52-VZVQsF4iN7eiVgIC-xc5CtMCKbUWiXDAeLg5QegpTGdkxENtTAlVwFwQElqhkvikYonr75BGmqWwSyiuDIOE45RVgIHXmCdprnwAAdpT3Av3SNNEZvpWemRM66Ds_3H_hKz1x6PhdDiIrw_IuhksQxLxnEPSwJjAEUJ9Lo-LAf4Em3aqIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Innovation+and+Novelty+in+Engineering+and+Technology+%28INNOVA%29&rft.atitle=Enhancing+Autism+Spectrum+Disorder+Identification%3A+A+Machine+Learning+Approach+Using+CatBoost&rft.au=Rathod%2C+Vijayalaxmi+N&rft.au=Goudar%2C+R.H.&rft.au=M%2C+Dhananjaya.+G.&rft.au=Patil%2C+Minal&rft.date=2024-12-20&rft.pub=IEEE&rft.volume=I&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FINNOVA63080.2024.10847025&rft.externalDocID=10847025 |