Enhancing Autism Spectrum Disorder Identification: A Machine Learning Approach Using CatBoost

Autism is a complex neurodevelopment condition that affects an individual's behavior, communication, and social interaction. Identification is a critical endeavor in health care, necessitating accurate and efficient diagnostic methodologies, early identification is pivotal for timely interventi...

Full description

Saved in:
Bibliographic Details
Published in2024 International Conference on Innovation and Novelty in Engineering and Technology (INNOVA) Vol. I; pp. 1 - 5
Main Authors Rathod, Vijayalaxmi N, Goudar, R.H., M, Dhananjaya. G., Patil, Minal, Hukkeri, Geetabai S, Kaliwal, Rohit B
Format Conference Proceeding
LanguageEnglish
Published IEEE 20.12.2024
Subjects
Online AccessGet full text
DOI10.1109/INNOVA63080.2024.10847025

Cover

Abstract Autism is a complex neurodevelopment condition that affects an individual's behavior, communication, and social interaction. Identification is a critical endeavor in health care, necessitating accurate and efficient diagnostic methodologies, early identification is pivotal for timely intervention and improved outcomes in affected individuals. This paper investigates the use of machine learning algorithms, specifically CatBoost, for Autism trait identification using heterogeneous datasets from toddlers, children, adolescents, and adults. The research investigates the performance of CatBoost in handling mixed data types, including categorical features and missing values, without extensive preprocessing. Utilizing gradient boosting on decision trees, CatBoost demonstrates its efficacy in capturing complex relationships between features, facilitating high predictive accuracy in autism identification. Through rigorous evaluation metrics such as accuracy, precision, recall, and Fl score, the designed system achieves a precise accuracy of 92% for adult datasets and 88% for child and adolescent datasets. This study delineates CatBoost's robustness across diverse age groups, providing insightful information on its applicability for Autism Spectrum Disorder diagnosis in the healthcare domain.
AbstractList Autism is a complex neurodevelopment condition that affects an individual's behavior, communication, and social interaction. Identification is a critical endeavor in health care, necessitating accurate and efficient diagnostic methodologies, early identification is pivotal for timely intervention and improved outcomes in affected individuals. This paper investigates the use of machine learning algorithms, specifically CatBoost, for Autism trait identification using heterogeneous datasets from toddlers, children, adolescents, and adults. The research investigates the performance of CatBoost in handling mixed data types, including categorical features and missing values, without extensive preprocessing. Utilizing gradient boosting on decision trees, CatBoost demonstrates its efficacy in capturing complex relationships between features, facilitating high predictive accuracy in autism identification. Through rigorous evaluation metrics such as accuracy, precision, recall, and Fl score, the designed system achieves a precise accuracy of 92% for adult datasets and 88% for child and adolescent datasets. This study delineates CatBoost's robustness across diverse age groups, providing insightful information on its applicability for Autism Spectrum Disorder diagnosis in the healthcare domain.
Author Kaliwal, Rohit B
M, Dhananjaya. G.
Hukkeri, Geetabai S
Patil, Minal
Goudar, R.H.
Rathod, Vijayalaxmi N
Author_xml – sequence: 1
  givenname: Vijayalaxmi N
  orcidid: 0009-0006-3232-3324
  surname: Rathod
  fullname: Rathod, Vijayalaxmi N
  organization: Visvesvaraya Technological University,Dept of Computer Science and Engineering,Belagavi,Karnataka,India
– sequence: 2
  givenname: R.H.
  orcidid: 0000-0002-4590-7744
  surname: Goudar
  fullname: Goudar, R.H.
  organization: Visvesvaraya Technological University,Dept of Computer Science and Engineering,Belagavi,Karnataka,India
– sequence: 3
  givenname: Dhananjaya. G.
  orcidid: 0000-0002-8492-335X
  surname: M
  fullname: M, Dhananjaya. G.
  organization: Visvesvaraya Technological University,Dept of Computer Science and Engineering,Belagavi,Karnataka,India
– sequence: 4
  givenname: Minal
  orcidid: 0009-0008-1124-8892
  surname: Patil
  fullname: Patil, Minal
  organization: Visvesvaraya Technological University,Dept of Computer Science and Engineering,Belagavi,Karnataka,India
– sequence: 5
  givenname: Geetabai S
  surname: Hukkeri
  fullname: Hukkeri, Geetabai S
  email: geetabai.hukkeri@manipal.edu
  organization: Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education,Dept of Computer Science and Engineering,India
– sequence: 6
  givenname: Rohit B
  orcidid: 0000-0001-8342-2126
  surname: Kaliwal
  fullname: Kaliwal, Rohit B
  organization: Visvesvaraya Technological University,Dept of Computer Science and Engineering,Belagavi,Karnataka,India
BookMark eNo1T81OwzAYCxIcYOwNOIQHaEmapE24lbJBpbIdBtzQlKZfWSSaVGl24O0pfyfLlm3ZF-jUeQcIXVOSUkrUTb3ZbF_LnBFJ0oxkPKVE8oJk4gQtVaEkY1QQQRk_R28rd9DOWPeOy2O004B3I5gYjgO-t5MPHQRcd-Ci7a3R0Xp3i0v8pM3BOsAN6OB-suMY_Czil-mbVjreeT_FS3TW648Jln-4QLv16rl6TJrtQ12VTWIVjYkqOtDzREWMkKJt-153mgDjVJFcZkbmWauE7DkrlMk5Bd1CIU07Ow3vKFugq99WCwD7MdhBh8_9_2f2BZnNUwk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/INNOVA63080.2024.10847025
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331505134
EndPage 5
ExternalDocumentID 10847025
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-97dea10890c585bbffada0e34190682c862b958f4379c641eabe78cbbbfc4d13
IEDL.DBID RIE
IngestDate Wed Jan 29 10:31:02 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-97dea10890c585bbffada0e34190682c862b958f4379c641eabe78cbbbfc4d13
ORCID 0000-0002-4590-7744
0009-0008-1124-8892
0000-0002-8492-335X
0009-0006-3232-3324
0000-0001-8342-2126
PageCount 5
ParticipantIDs ieee_primary_10847025
PublicationCentury 2000
PublicationDate 2024-Dec.-20
PublicationDateYYYYMMDD 2024-12-20
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-20
  day: 20
PublicationDecade 2020
PublicationTitle 2024 International Conference on Innovation and Novelty in Engineering and Technology (INNOVA)
PublicationTitleAbbrev INNOVA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8957924
Snippet Autism is a complex neurodevelopment condition that affects an individual's behavior, communication, and social interaction. Identification is a critical...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Autism
Boosting
CatBoost
Convolutional Neural Network
Data models
Decision trees
DNNPC
Machine learning
Machine learning algorithms
Overfitting
Pediatrics
Robustness
SVM
Technological innovation
Title Enhancing Autism Spectrum Disorder Identification: A Machine Learning Approach Using CatBoost
URI https://ieeexplore.ieee.org/document/10847025
Volume I
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sD-JJxYpvVvCamKS7eXirpaUKRsEHvUjZx6yKNBGbXvz1zm4SRUHwFsKGXWYfM7P5vm8IOQGTgmJJ5vE0izymQHsCHZEnJJNcpyGDGm2Rx5N7djnl04as7rgwAODAZ-DbR_cvX5dqaa_KcIfjWYpOukM6uM5qstYqOW50M08v8vz6YRD3MQjCxC9iftv-R-UU5zjG6yRvu6zxIq_-spK--vilxvjvMW2Q3jdHj958eZ9NsgLFFnkcFc9WQKN4ogNcUYs5tfXlq_flnLYym7Sm5prmru6MDuiVA1QCbbRW8dtGaJw6QAEdiuq8LBdVj9yOR3fDidcUUPBesrDyskSDwPFlgcKkQEpjhBYBWAW3IE4jhcmMzHhqrCShilkIQkKSKoktFdNhf5t0i7KAHUIxLow1xw2rACMug1mS4aoPIMBEikfpLulZy8zeaoWMWWuUvT_e75M1O0EWFhIFB6SLdoBDdO6VPHKT-gmxEabU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA06QX1SceK3EXxt7UfStb7NsbHpVgWn7EVGkt6oyFpx3Yu_3pt-KAqCb6U0NNw0PbnJOecScgY6BMVakcXDyLOYgsQSCESWkEzyJHQZlGyLOOjfs6sJn1Ri9UILAwAF-Qxsc1mc5SeZWpitMpzh-C9FkF4mKwj8jJdyrVVyWjlnng_i-OahHfi4DMLUz2N23eJH7ZQCOnobJK5fWjJGXu1FLm318cuP8d-92iTNb5Uevf3Cny2yBOk2eeymz8ZCI32ibfym5jNqKszn74sZrY02aSnO1dVu3QVt01FBqQRaua1i28pqnBaUAtoR-WWWzfMmuet1x52-VZVQsF4iN7eiVgIC-xc5CtMCKbUWiXDAeLg5QegpTGdkxENtTAlVwFwQElqhkvikYonr75BGmqWwSyiuDIOE45RVgIHXmCdprnwAAdpT3Av3SNNEZvpWemRM66Ds_3H_hKz1x6PhdDiIrw_IuhksQxLxnEPSwJjAEUJ9Lo-LAf4Em3aqIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Innovation+and+Novelty+in+Engineering+and+Technology+%28INNOVA%29&rft.atitle=Enhancing+Autism+Spectrum+Disorder+Identification%3A+A+Machine+Learning+Approach+Using+CatBoost&rft.au=Rathod%2C+Vijayalaxmi+N&rft.au=Goudar%2C+R.H.&rft.au=M%2C+Dhananjaya.+G.&rft.au=Patil%2C+Minal&rft.date=2024-12-20&rft.pub=IEEE&rft.volume=I&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FINNOVA63080.2024.10847025&rft.externalDocID=10847025