Machine Learning for Autonomous Navigation and Collision Avoidance in UAVs

Machine learning techniques are revolutionizing the field of autonomous navigation and collision avoidance in Unmanned Aerial Vehicles (UAVs). The advancement of UAVs toward autonomous navigation methods is aided by the sensors they carry, which can gather vast amounts of data, including images. Thi...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Confernce on Computational Intelligence and Communication Networks) pp. 381 - 388
Main Authors Mon, Bisni Fahad, Hayajneh, Mohammad, Ali, Najah Abu, Ullah, Farman, Al Warafy, Abdulmalik, Saeed, Nasir
Format Conference Proceeding
LanguageEnglish
Published IEEE 22.12.2024
Subjects
Online AccessGet full text
ISSN2472-7555
DOI10.1109/CICN63059.2024.10847476

Cover

Abstract Machine learning techniques are revolutionizing the field of autonomous navigation and collision avoidance in Unmanned Aerial Vehicles (UAVs). The advancement of UAVs toward autonomous navigation methods is aided by the sensors they carry, which can gather vast amounts of data, including images. This data can be used to train using vision-based deep learning autonomous navigation techniques. This study explores machine learning techniques to tackle complex navigation tasks such as path planning, localization, mapping, and obstacle detection. It also highlights the challenges of implementing machine learning in real-time environments, focusing on data management, computational efficiency, and the adaptability of models to dynamic conditions. By addressing these factors, the paper offers a detailed overview of how machine learning can improve UAV performance and suggests future research directions in this rapidly evolving field.
AbstractList Machine learning techniques are revolutionizing the field of autonomous navigation and collision avoidance in Unmanned Aerial Vehicles (UAVs). The advancement of UAVs toward autonomous navigation methods is aided by the sensors they carry, which can gather vast amounts of data, including images. This data can be used to train using vision-based deep learning autonomous navigation techniques. This study explores machine learning techniques to tackle complex navigation tasks such as path planning, localization, mapping, and obstacle detection. It also highlights the challenges of implementing machine learning in real-time environments, focusing on data management, computational efficiency, and the adaptability of models to dynamic conditions. By addressing these factors, the paper offers a detailed overview of how machine learning can improve UAV performance and suggests future research directions in this rapidly evolving field.
Author Ali, Najah Abu
Mon, Bisni Fahad
Al Warafy, Abdulmalik
Ullah, Farman
Hayajneh, Mohammad
Saeed, Nasir
Author_xml – sequence: 1
  givenname: Bisni Fahad
  surname: Mon
  fullname: Mon, Bisni Fahad
  email: bisni.f@uaeu.ac.ae
  organization: UAE University,Computer & Network Eng.,Al Ain,UAE
– sequence: 2
  givenname: Mohammad
  surname: Hayajneh
  fullname: Hayajneh, Mohammad
  email: mhayajneh@uaeu.ac.ae
  organization: UAE University,Computer & Network Eng.,Al Ain,UAE
– sequence: 3
  givenname: Najah Abu
  surname: Ali
  fullname: Ali, Najah Abu
  email: najah@uaeu.ac.ae
  organization: UAE University,Computer & Network Eng.,Al Ain,UAE
– sequence: 4
  givenname: Farman
  surname: Ullah
  fullname: Ullah, Farman
  email: farman@uaeu.ac.ae
  organization: UAE University,Computer & Network Eng.,Al Ain,UAE
– sequence: 5
  givenname: Abdulmalik
  surname: Al Warafy
  fullname: Al Warafy, Abdulmalik
  email: aalwarafy@uaeu.ac.ae
  organization: UAE University,Computer & Network Eng.,Al Ain,UAE
– sequence: 6
  givenname: Nasir
  surname: Saeed
  fullname: Saeed, Nasir
  email: nasir.saeed@uaeu.ac.ae
  organization: UAE University,Electrical & Communication Eng.,Al Ain,UAE
BookMark eNo1j11LwzAYhaMoOGf_gWD-QOubrza9LMWPSZ0309vxrklmpEuk6Qb-eyfq1eHwwOE5l-QsxGAJuWFQMAb1bbtol6UAVRccuCwYaFnJqjwhWV3VWgimQPFSnpIZlxXPK6XUBclS-gAAVjKlKz4jT8_Yv_tgaWdxDD5sqYsjbfZTDHEX94ku8eC3OPkYKAZD2zgMPv205hC9wdBb6gN9bd7SFTl3OCSb_eWcrO7vVu1j3r08LNqmy33NpryWhmvQCoFZq1ypHHDQaIwwzG02CKYXTpfOGKP7I5TSYG8FMO7w6C3EnFz_znpr7fpz9Dscv9b_78U3R-BRGA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CICN63059.2024.10847476
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès UT - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplorer
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplorer
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331505264
EISSN 2472-7555
EndPage 388
ExternalDocumentID 10847476
Genre orig-research
GrantInformation_xml – fundername: United Arab Emirates University
  grantid: G00004526
  funderid: 10.13039/501100006013
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i91t-94d28085a01ee5f65f0208add3d1fbba0dc3f86fddd8c5f044dace3012fa00133
IEDL.DBID RIE
IngestDate Wed Feb 12 06:22:46 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-94d28085a01ee5f65f0208add3d1fbba0dc3f86fddd8c5f044dace3012fa00133
PageCount 8
ParticipantIDs ieee_primary_10847476
PublicationCentury 2000
PublicationDate 2024-Dec.-22
PublicationDateYYYYMMDD 2024-12-22
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-22
  day: 22
PublicationDecade 2020
PublicationTitle Proceedings (International Confernce on Computational Intelligence and Communication Networks)
PublicationTitleAbbrev CICN
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001615872
Score 1.8950322
Snippet Machine learning techniques are revolutionizing the field of autonomous navigation and collision avoidance in Unmanned Aerial Vehicles (UAVs). The advancement...
SourceID ieee
SourceType Publisher
StartPage 381
SubjectTerms Adaptation models
Autonomous aerial vehicles
Autonomous robots
Collision avoidance
communication
machine learning
Navigation
Path planning
Real-time systems
Sensors
Testing
UAV
Vehicle dynamics
Title Machine Learning for Autonomous Navigation and Collision Avoidance in UAVs
URI https://ieeexplore.ieee.org/document/10847476
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07a8MwEBZNpk7pI6VvNHS164eiyGMIDWkgpkNSsgU9TiUU7NLYGfrre1LslhYK3YyNQUh3-k6n77sj5E5rroAZHsTAWcC4igIhZRxgaJsmEAsBvmvJPOfTJZutBqtGrO61MADgyWcQukd_l29KXbtUGXo47qVsyDukg3a2F2t9J1QQm8UwaThccZTdjx_HOUd7dnqUhIXt3z_6qHgYmfRI3g5gzx55DetKhfrjV23Gf4_wiPS_FXv06QuLjskBFCek17ZsoI0Hn5LZ3JMngTZ1VV8oBq10VFdO21DWW5rLnS-6URZUFoa6vIJXn9PRrtwYZyJ0U9Dl6HnbJ4vJw2I8DZp2CsEmi6sgYyYRGGDJKAYYWD6wrj8nbm-pia1SMjI6tYJbY4zQ-JExIzWg_ydWukAxPSPdoizgnFA8UBuMi5QUmWHWWCUR4dJUZ9bISMLggvTd1Kzf9gUz1u2sXP7x_oocuhVyLJEkuSbd6r2GG8T6St36Nf4EzMmphA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFB20LnRVHxXfzsJtYh6T6WRZitLWNrhopbsyjztShERs0oVf78w0sSgI7kJCYJjHPSc399yD0J2UVABR1AuBEo9QEXiM89Az1DaOIGQMnGvJJKODGRnNk3ktVndaGABwxWfg20v3L18VsrKpMnPCTSwlXbqL9gzwk2Qj19qmVAw6s25UV3GFQXrfH_Yzana0VaRExG_e_-Gk4oDksY2yZgib-pE3vyqFLz9_dWf89xgPUWer2cPP32h0hHYgP0btxrQB12f4BI0mrnwScN1Z9RUb2op7VWnVDUW1whlfu7YbRY55rrDNLDj9Oe6ti6WymwQvczzrvaw6aPr4MO0PvNpQwVumYemlREXMUCwehACJpom2Dp0mwMUq1ELwQMlYM6qVUkyah4QoLsFEgEhzSxXjU9TKixzOEDaf1MowI8FZqohWWnCDcXEsU614wCE5Rx07NYv3TcuMRTMrF3_cv0X7g-lkvBgPs6dLdGBXy9aMRNEVapUfFVwb5C_FjVvvL9xTrNE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Confernce+on+Computational+Intelligence+and+Communication+Networks%29&rft.atitle=Machine+Learning+for+Autonomous+Navigation+and+Collision+Avoidance+in+UAVs&rft.au=Mon%2C+Bisni+Fahad&rft.au=Hayajneh%2C+Mohammad&rft.au=Ali%2C+Najah+Abu&rft.au=Ullah%2C+Farman&rft.date=2024-12-22&rft.pub=IEEE&rft.eissn=2472-7555&rft.spage=381&rft.epage=388&rft_id=info:doi/10.1109%2FCICN63059.2024.10847476&rft.externalDocID=10847476