Machine Learning for Autonomous Navigation and Collision Avoidance in UAVs
Machine learning techniques are revolutionizing the field of autonomous navigation and collision avoidance in Unmanned Aerial Vehicles (UAVs). The advancement of UAVs toward autonomous navigation methods is aided by the sensors they carry, which can gather vast amounts of data, including images. Thi...
Saved in:
Published in | Proceedings (International Confernce on Computational Intelligence and Communication Networks) pp. 381 - 388 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
22.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2472-7555 |
DOI | 10.1109/CICN63059.2024.10847476 |
Cover
Abstract | Machine learning techniques are revolutionizing the field of autonomous navigation and collision avoidance in Unmanned Aerial Vehicles (UAVs). The advancement of UAVs toward autonomous navigation methods is aided by the sensors they carry, which can gather vast amounts of data, including images. This data can be used to train using vision-based deep learning autonomous navigation techniques. This study explores machine learning techniques to tackle complex navigation tasks such as path planning, localization, mapping, and obstacle detection. It also highlights the challenges of implementing machine learning in real-time environments, focusing on data management, computational efficiency, and the adaptability of models to dynamic conditions. By addressing these factors, the paper offers a detailed overview of how machine learning can improve UAV performance and suggests future research directions in this rapidly evolving field. |
---|---|
AbstractList | Machine learning techniques are revolutionizing the field of autonomous navigation and collision avoidance in Unmanned Aerial Vehicles (UAVs). The advancement of UAVs toward autonomous navigation methods is aided by the sensors they carry, which can gather vast amounts of data, including images. This data can be used to train using vision-based deep learning autonomous navigation techniques. This study explores machine learning techniques to tackle complex navigation tasks such as path planning, localization, mapping, and obstacle detection. It also highlights the challenges of implementing machine learning in real-time environments, focusing on data management, computational efficiency, and the adaptability of models to dynamic conditions. By addressing these factors, the paper offers a detailed overview of how machine learning can improve UAV performance and suggests future research directions in this rapidly evolving field. |
Author | Ali, Najah Abu Mon, Bisni Fahad Al Warafy, Abdulmalik Ullah, Farman Hayajneh, Mohammad Saeed, Nasir |
Author_xml | – sequence: 1 givenname: Bisni Fahad surname: Mon fullname: Mon, Bisni Fahad email: bisni.f@uaeu.ac.ae organization: UAE University,Computer & Network Eng.,Al Ain,UAE – sequence: 2 givenname: Mohammad surname: Hayajneh fullname: Hayajneh, Mohammad email: mhayajneh@uaeu.ac.ae organization: UAE University,Computer & Network Eng.,Al Ain,UAE – sequence: 3 givenname: Najah Abu surname: Ali fullname: Ali, Najah Abu email: najah@uaeu.ac.ae organization: UAE University,Computer & Network Eng.,Al Ain,UAE – sequence: 4 givenname: Farman surname: Ullah fullname: Ullah, Farman email: farman@uaeu.ac.ae organization: UAE University,Computer & Network Eng.,Al Ain,UAE – sequence: 5 givenname: Abdulmalik surname: Al Warafy fullname: Al Warafy, Abdulmalik email: aalwarafy@uaeu.ac.ae organization: UAE University,Computer & Network Eng.,Al Ain,UAE – sequence: 6 givenname: Nasir surname: Saeed fullname: Saeed, Nasir email: nasir.saeed@uaeu.ac.ae organization: UAE University,Electrical & Communication Eng.,Al Ain,UAE |
BookMark | eNo1j11LwzAYhaMoOGf_gWD-QOubrza9LMWPSZ0309vxrklmpEuk6Qb-eyfq1eHwwOE5l-QsxGAJuWFQMAb1bbtol6UAVRccuCwYaFnJqjwhWV3VWgimQPFSnpIZlxXPK6XUBclS-gAAVjKlKz4jT8_Yv_tgaWdxDD5sqYsjbfZTDHEX94ku8eC3OPkYKAZD2zgMPv205hC9wdBb6gN9bd7SFTl3OCSb_eWcrO7vVu1j3r08LNqmy33NpryWhmvQCoFZq1ypHHDQaIwwzG02CKYXTpfOGKP7I5TSYG8FMO7w6C3EnFz_znpr7fpz9Dscv9b_78U3R-BRGA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CICN63059.2024.10847476 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings Accès UT - IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplorer IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplorer url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9798331505264 |
EISSN | 2472-7555 |
EndPage | 388 |
ExternalDocumentID | 10847476 |
Genre | orig-research |
GrantInformation_xml | – fundername: United Arab Emirates University grantid: G00004526 funderid: 10.13039/501100006013 |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i91t-94d28085a01ee5f65f0208add3d1fbba0dc3f86fddd8c5f044dace3012fa00133 |
IEDL.DBID | RIE |
IngestDate | Wed Feb 12 06:22:46 EST 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-94d28085a01ee5f65f0208add3d1fbba0dc3f86fddd8c5f044dace3012fa00133 |
PageCount | 8 |
ParticipantIDs | ieee_primary_10847476 |
PublicationCentury | 2000 |
PublicationDate | 2024-Dec.-22 |
PublicationDateYYYYMMDD | 2024-12-22 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-Dec.-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings (International Confernce on Computational Intelligence and Communication Networks) |
PublicationTitleAbbrev | CICN |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001615872 |
Score | 1.8950322 |
Snippet | Machine learning techniques are revolutionizing the field of autonomous navigation and collision avoidance in Unmanned Aerial Vehicles (UAVs). The advancement... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 381 |
SubjectTerms | Adaptation models Autonomous aerial vehicles Autonomous robots Collision avoidance communication machine learning Navigation Path planning Real-time systems Sensors Testing UAV Vehicle dynamics |
Title | Machine Learning for Autonomous Navigation and Collision Avoidance in UAVs |
URI | https://ieeexplore.ieee.org/document/10847476 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07a8MwEBZNpk7pI6VvNHS164eiyGMIDWkgpkNSsgU9TiUU7NLYGfrre1LslhYK3YyNQUh3-k6n77sj5E5rroAZHsTAWcC4igIhZRxgaJsmEAsBvmvJPOfTJZutBqtGrO61MADgyWcQukd_l29KXbtUGXo47qVsyDukg3a2F2t9J1QQm8UwaThccZTdjx_HOUd7dnqUhIXt3z_6qHgYmfRI3g5gzx55DetKhfrjV23Gf4_wiPS_FXv06QuLjskBFCek17ZsoI0Hn5LZ3JMngTZ1VV8oBq10VFdO21DWW5rLnS-6URZUFoa6vIJXn9PRrtwYZyJ0U9Dl6HnbJ4vJw2I8DZp2CsEmi6sgYyYRGGDJKAYYWD6wrj8nbm-pia1SMjI6tYJbY4zQ-JExIzWg_ydWukAxPSPdoizgnFA8UBuMi5QUmWHWWCUR4dJUZ9bISMLggvTd1Kzf9gUz1u2sXP7x_oocuhVyLJEkuSbd6r2GG8T6St36Nf4EzMmphA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFB20LnRVHxXfzsJtYh6T6WRZitLWNrhopbsyjztShERs0oVf78w0sSgI7kJCYJjHPSc399yD0J2UVABR1AuBEo9QEXiM89Az1DaOIGQMnGvJJKODGRnNk3ktVndaGABwxWfg20v3L18VsrKpMnPCTSwlXbqL9gzwk2Qj19qmVAw6s25UV3GFQXrfH_Yzana0VaRExG_e_-Gk4oDksY2yZgib-pE3vyqFLz9_dWf89xgPUWer2cPP32h0hHYgP0btxrQB12f4BI0mrnwScN1Z9RUb2op7VWnVDUW1whlfu7YbRY55rrDNLDj9Oe6ti6WymwQvczzrvaw6aPr4MO0PvNpQwVumYemlREXMUCwehACJpom2Dp0mwMUq1ELwQMlYM6qVUkyah4QoLsFEgEhzSxXjU9TKixzOEDaf1MowI8FZqohWWnCDcXEsU614wCE5Rx07NYv3TcuMRTMrF3_cv0X7g-lkvBgPs6dLdGBXy9aMRNEVapUfFVwb5C_FjVvvL9xTrNE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Confernce+on+Computational+Intelligence+and+Communication+Networks%29&rft.atitle=Machine+Learning+for+Autonomous+Navigation+and+Collision+Avoidance+in+UAVs&rft.au=Mon%2C+Bisni+Fahad&rft.au=Hayajneh%2C+Mohammad&rft.au=Ali%2C+Najah+Abu&rft.au=Ullah%2C+Farman&rft.date=2024-12-22&rft.pub=IEEE&rft.eissn=2472-7555&rft.spage=381&rft.epage=388&rft_id=info:doi/10.1109%2FCICN63059.2024.10847476&rft.externalDocID=10847476 |