Towards Practical Deployment: Subject-Independent EEG-Based Mental Workload Classification on Assembly Lines

Despite significant advancements in Electroencephalography (EEG)-based Mental Workload (MWL) assessment facilitated by deep learning, challenges such as subject-independent MWL estimation persist. Addressing this challenge is crucial for the widespread adoption of the technology in practical, real-w...

Full description

Saved in:
Bibliographic Details
Published in2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN) pp. 1 - 4
Main Authors Pusica, Milos, Caiazzo, Carlo, Djapan, Marko, Savkovic, Marija, Leva, Maria Chiara
Format Conference Proceeding
LanguageEnglish
Published IEEE 03.06.2024
Subjects
Online AccessGet full text
DOI10.1109/IcETRAN62308.2024.10645152

Cover

Loading…
Abstract Despite significant advancements in Electroencephalography (EEG)-based Mental Workload (MWL) assessment facilitated by deep learning, challenges such as subject-independent MWL estimation persist. Addressing this challenge is crucial for the widespread adoption of the technology in practical, real-world settings. It could facilitate the deployment of neuroadaptive systems across various users without the need for individual calibration, significantly reducing setup time and complexity, and enhancing the scalability. This study explores subject-independent MWL estimation under realistic conditions of a typical assembly line workplace, as opposed to the idealized settings typical of existing research. We employed a convolutional neural network (CNN) to classify 10s EEG segments into two MWL categories, based on different complexity of visual instructions for manual assembly. The results in subject-dependent and subject-independent cases were compared. The findings reveal only a marginal decrease in classification accuracy when transitioning from subject-dependent (92.2 % ) to subject-independent scenarios (90.8%). The study demonstrates the feasibility of using deep learning models for EEG-based MWL estimation under realistic conditions, paving the way for broader applications of this technology across diverse industrial environments.
AbstractList Despite significant advancements in Electroencephalography (EEG)-based Mental Workload (MWL) assessment facilitated by deep learning, challenges such as subject-independent MWL estimation persist. Addressing this challenge is crucial for the widespread adoption of the technology in practical, real-world settings. It could facilitate the deployment of neuroadaptive systems across various users without the need for individual calibration, significantly reducing setup time and complexity, and enhancing the scalability. This study explores subject-independent MWL estimation under realistic conditions of a typical assembly line workplace, as opposed to the idealized settings typical of existing research. We employed a convolutional neural network (CNN) to classify 10s EEG segments into two MWL categories, based on different complexity of visual instructions for manual assembly. The results in subject-dependent and subject-independent cases were compared. The findings reveal only a marginal decrease in classification accuracy when transitioning from subject-dependent (92.2 % ) to subject-independent scenarios (90.8%). The study demonstrates the feasibility of using deep learning models for EEG-based MWL estimation under realistic conditions, paving the way for broader applications of this technology across diverse industrial environments.
Author Djapan, Marko
Leva, Maria Chiara
Caiazzo, Carlo
Savkovic, Marija
Pusica, Milos
Author_xml – sequence: 1
  givenname: Milos
  orcidid: 0009-0003-4522-6222
  surname: Pusica
  fullname: Pusica, Milos
  email: milos.pusica@mbraintrain.com
  organization: School of Food Science & Environmental Health, Technological University Dublin,Dublin,Ireland
– sequence: 2
  givenname: Carlo
  orcidid: 0009-0007-2761-7886
  surname: Caiazzo
  fullname: Caiazzo, Carlo
  email: carlocaiazzo@fink.rs
  organization: University of Kragujevac,Faculty of Engineering,Kragujevac,Serbia
– sequence: 3
  givenname: Marko
  orcidid: 0000-0002-8016-8422
  surname: Djapan
  fullname: Djapan, Marko
  email: djapan@kg.ac.rs
  organization: University of Kragujevac,Faculty of Engineering,Kragujevac,Serbia
– sequence: 4
  givenname: Marija
  orcidid: 0000-0002-3620-7762
  surname: Savkovic
  fullname: Savkovic, Marija
  email: marija.savkovic@kg.ac.rs
  organization: University of Kragujevac,Faculty of Engineering,Kragujevac,Serbia
– sequence: 5
  givenname: Maria Chiara
  orcidid: 0000-0002-6770-8332
  surname: Leva
  fullname: Leva, Maria Chiara
  email: mariachiara.leva@tudublin.ie
  organization: School of Food Science & Environmental Health Technological University Dublin,Dublin,Ireland
BookMark eNo1kE1LAzEYhCPoQWv_gYfgfWs-t4m3Wre1UD_QBY_l3eQtRNPsslmR_nsXVBhmmMM8h7kgp6lNSMg1ZzPOmb3ZuKp-XTyVQjIzE0yoGWel0lyLEzK1c2ukZtKU1ppzEuv2G3qf6UsPbggOIr3HLrbHA6bhlr59NR_ohmKTPHY4WhpoVa2LO8jo6eNYx8F723_GFjxdRsg57EfKENpERy1yxkMTj3QbEuZLcraHmHH6lxNSr6p6-VBsn9eb5WJbBMuHwtiSS8XAMCtUqRCd9jhX5dwIcEYyLsBrr7hyihmvwXLNFN8Dt6oRttFyQq5-sQERd10fDtAfd_8fyB_afVeW
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IcETRAN62308.2024.10645152
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350386998
EndPage 4
ExternalDocumentID 10645152
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-8961340a8092464eec5de746782ac83012ad5d414c408d5a915041fa194b29b53
IEDL.DBID RIE
IngestDate Wed Sep 11 06:07:02 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-8961340a8092464eec5de746782ac83012ad5d414c408d5a915041fa194b29b53
ORCID 0009-0007-2761-7886
0009-0003-4522-6222
0000-0002-3620-7762
0000-0002-6770-8332
0000-0002-8016-8422
PageCount 4
ParticipantIDs ieee_primary_10645152
PublicationCentury 2000
PublicationDate 2024-June-3
PublicationDateYYYYMMDD 2024-06-03
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-3
  day: 03
PublicationDecade 2020
PublicationTitle 2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN)
PublicationTitleAbbrev ICETRAN
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8746532
Snippet Despite significant advancements in Electroencephalography (EEG)-based Mental Workload (MWL) assessment facilitated by deep learning, challenges such as...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational modeling
convolutional neural networks
Deep learning
Electroencephalography
Electroencephalography (EEG)
Employment
Estimation
industrial settings
manual assembly
Manuals
mental workload
task complexity
Visualization
Title Towards Practical Deployment: Subject-Independent EEG-Based Mental Workload Classification on Assembly Lines
URI https://ieeexplore.ieee.org/document/10645152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA26J59UnPhNHnxNbbska3zzo3MTHSIV9jbSfIA416Hdg_567023iYIg9KEUkpZcmpPcnHsOIadG667n3rCuNAYtzBRTAhPwpU209DoxQTL_fij7T_x2JEaLYvVQC-OcC-QzF-FtOMu3lZljqgz-cMkBf2HGXYedW1OstRASTWJ1NjB58XgxBECPkbSV8mjZ4Id1SkCO3iYZLt_ZEEZeonldRubzlxzjvz9qi7S_i_Towwp-tsmam-6QSRFosO-00SGCANBrh56-2Mk5hWkC8y5ssDK_rWme37BLwDJLGz0fivnzSaUtDYaZSCUK0aNw4RHxazn5oHfIlm-TopcXV322MFRgzyqpWaYAu3mssxg2XZI7Z4R1aDeSpRpCAlClrbA84YbHmRVawWKRJxAvxctUlaKzS1rTaur2CBVCC2m0T11qoCOvZGZgMWOt92nHZ26ftHGkxrNGMmO8HKSDP54fkg0MWOBgdY5Iq36bu2NA-7o8CVH-AgGQrDA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA0yH_RJxYnf5sHX1LZLusY3Pzo33YpIhb2NNB8gzk20e9Bf773pNlEQhD6EQpOSQ3PSm3PvIeRUK9V23GnWTrRGCzPJpMAAfGkilTgVaV8yf5An3Ud-OxTDebK6z4Wx1nrxmQ2w6c_yzVTPMFQGX3jCgX9hxV0F4ueyTtealxKNQnnW01nxcJEDpYco24p5sHjkh3mK547OBskXo9aSkedgVpWB_vxVkPHfr7VJmt9pevR-SUBbZMVOtsm48ELYd1pXIgII6LVFV1_s5JzCQoGRF9Zb2t9WNMtu2CWwmaF1RR-KEfTxVBnqLTNRTOTxo3DhIfFLOf6gfdTLN0nRyYqrLptbKrAnGVUslcDePFRpCL9dCbdWC2PRcCSNFYACZKWMMDzimoepEUrCdpFHgJjkZSxL0dohjcl0YncJFUKJRCsX21hDR04mqYbtjDHOxS2X2j3SxJkavdZFM0aLSdr_4_4JWesWg_6o38vvDsg6gucVWa1D0qjeZvYIuL8qjz3iXzjVr4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+11th+International+Conference+on+Electrical%2C+Electronic+and+Computing+Engineering+%28IcETRAN%29&rft.atitle=Towards+Practical+Deployment%3A+Subject-Independent+EEG-Based+Mental+Workload+Classification+on+Assembly+Lines&rft.au=Pusica%2C+Milos&rft.au=Caiazzo%2C+Carlo&rft.au=Djapan%2C+Marko&rft.au=Savkovic%2C+Marija&rft.date=2024-06-03&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FIcETRAN62308.2024.10645152&rft.externalDocID=10645152