Towards Practical Deployment: Subject-Independent EEG-Based Mental Workload Classification on Assembly Lines
Despite significant advancements in Electroencephalography (EEG)-based Mental Workload (MWL) assessment facilitated by deep learning, challenges such as subject-independent MWL estimation persist. Addressing this challenge is crucial for the widespread adoption of the technology in practical, real-w...
Saved in:
Published in | 2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN) pp. 1 - 4 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
03.06.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/IcETRAN62308.2024.10645152 |
Cover
Loading…
Abstract | Despite significant advancements in Electroencephalography (EEG)-based Mental Workload (MWL) assessment facilitated by deep learning, challenges such as subject-independent MWL estimation persist. Addressing this challenge is crucial for the widespread adoption of the technology in practical, real-world settings. It could facilitate the deployment of neuroadaptive systems across various users without the need for individual calibration, significantly reducing setup time and complexity, and enhancing the scalability. This study explores subject-independent MWL estimation under realistic conditions of a typical assembly line workplace, as opposed to the idealized settings typical of existing research. We employed a convolutional neural network (CNN) to classify 10s EEG segments into two MWL categories, based on different complexity of visual instructions for manual assembly. The results in subject-dependent and subject-independent cases were compared. The findings reveal only a marginal decrease in classification accuracy when transitioning from subject-dependent (92.2 % ) to subject-independent scenarios (90.8%). The study demonstrates the feasibility of using deep learning models for EEG-based MWL estimation under realistic conditions, paving the way for broader applications of this technology across diverse industrial environments. |
---|---|
AbstractList | Despite significant advancements in Electroencephalography (EEG)-based Mental Workload (MWL) assessment facilitated by deep learning, challenges such as subject-independent MWL estimation persist. Addressing this challenge is crucial for the widespread adoption of the technology in practical, real-world settings. It could facilitate the deployment of neuroadaptive systems across various users without the need for individual calibration, significantly reducing setup time and complexity, and enhancing the scalability. This study explores subject-independent MWL estimation under realistic conditions of a typical assembly line workplace, as opposed to the idealized settings typical of existing research. We employed a convolutional neural network (CNN) to classify 10s EEG segments into two MWL categories, based on different complexity of visual instructions for manual assembly. The results in subject-dependent and subject-independent cases were compared. The findings reveal only a marginal decrease in classification accuracy when transitioning from subject-dependent (92.2 % ) to subject-independent scenarios (90.8%). The study demonstrates the feasibility of using deep learning models for EEG-based MWL estimation under realistic conditions, paving the way for broader applications of this technology across diverse industrial environments. |
Author | Djapan, Marko Leva, Maria Chiara Caiazzo, Carlo Savkovic, Marija Pusica, Milos |
Author_xml | – sequence: 1 givenname: Milos orcidid: 0009-0003-4522-6222 surname: Pusica fullname: Pusica, Milos email: milos.pusica@mbraintrain.com organization: School of Food Science & Environmental Health, Technological University Dublin,Dublin,Ireland – sequence: 2 givenname: Carlo orcidid: 0009-0007-2761-7886 surname: Caiazzo fullname: Caiazzo, Carlo email: carlocaiazzo@fink.rs organization: University of Kragujevac,Faculty of Engineering,Kragujevac,Serbia – sequence: 3 givenname: Marko orcidid: 0000-0002-8016-8422 surname: Djapan fullname: Djapan, Marko email: djapan@kg.ac.rs organization: University of Kragujevac,Faculty of Engineering,Kragujevac,Serbia – sequence: 4 givenname: Marija orcidid: 0000-0002-3620-7762 surname: Savkovic fullname: Savkovic, Marija email: marija.savkovic@kg.ac.rs organization: University of Kragujevac,Faculty of Engineering,Kragujevac,Serbia – sequence: 5 givenname: Maria Chiara orcidid: 0000-0002-6770-8332 surname: Leva fullname: Leva, Maria Chiara email: mariachiara.leva@tudublin.ie organization: School of Food Science & Environmental Health Technological University Dublin,Dublin,Ireland |
BookMark | eNo1kE1LAzEYhCPoQWv_gYfgfWs-t4m3Wre1UD_QBY_l3eQtRNPsslmR_nsXVBhmmMM8h7kgp6lNSMg1ZzPOmb3ZuKp-XTyVQjIzE0yoGWel0lyLEzK1c2ukZtKU1ppzEuv2G3qf6UsPbggOIr3HLrbHA6bhlr59NR_ohmKTPHY4WhpoVa2LO8jo6eNYx8F723_GFjxdRsg57EfKENpERy1yxkMTj3QbEuZLcraHmHH6lxNSr6p6-VBsn9eb5WJbBMuHwtiSS8XAMCtUqRCd9jhX5dwIcEYyLsBrr7hyihmvwXLNFN8Dt6oRttFyQq5-sQERd10fDtAfd_8fyB_afVeW |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IcETRAN62308.2024.10645152 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350386998 |
EndPage | 4 |
ExternalDocumentID | 10645152 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i91t-8961340a8092464eec5de746782ac83012ad5d414c408d5a915041fa194b29b53 |
IEDL.DBID | RIE |
IngestDate | Wed Sep 11 06:07:02 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-8961340a8092464eec5de746782ac83012ad5d414c408d5a915041fa194b29b53 |
ORCID | 0009-0007-2761-7886 0009-0003-4522-6222 0000-0002-3620-7762 0000-0002-6770-8332 0000-0002-8016-8422 |
PageCount | 4 |
ParticipantIDs | ieee_primary_10645152 |
PublicationCentury | 2000 |
PublicationDate | 2024-June-3 |
PublicationDateYYYYMMDD | 2024-06-03 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-June-3 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | 2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN) |
PublicationTitleAbbrev | ICETRAN |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8746532 |
Snippet | Despite significant advancements in Electroencephalography (EEG)-based Mental Workload (MWL) assessment facilitated by deep learning, challenges such as... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Computational modeling convolutional neural networks Deep learning Electroencephalography Electroencephalography (EEG) Employment Estimation industrial settings manual assembly Manuals mental workload task complexity Visualization |
Title | Towards Practical Deployment: Subject-Independent EEG-Based Mental Workload Classification on Assembly Lines |
URI | https://ieeexplore.ieee.org/document/10645152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA26J59UnPhNHnxNbbska3zzo3MTHSIV9jbSfIA416Hdg_567023iYIg9KEUkpZcmpPcnHsOIadG667n3rCuNAYtzBRTAhPwpU209DoxQTL_fij7T_x2JEaLYvVQC-OcC-QzF-FtOMu3lZljqgz-cMkBf2HGXYedW1OstRASTWJ1NjB58XgxBECPkbSV8mjZ4Id1SkCO3iYZLt_ZEEZeonldRubzlxzjvz9qi7S_i_Towwp-tsmam-6QSRFosO-00SGCANBrh56-2Mk5hWkC8y5ssDK_rWme37BLwDJLGz0fivnzSaUtDYaZSCUK0aNw4RHxazn5oHfIlm-TopcXV322MFRgzyqpWaYAu3mssxg2XZI7Z4R1aDeSpRpCAlClrbA84YbHmRVawWKRJxAvxctUlaKzS1rTaur2CBVCC2m0T11qoCOvZGZgMWOt92nHZ26ftHGkxrNGMmO8HKSDP54fkg0MWOBgdY5Iq36bu2NA-7o8CVH-AgGQrDA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA0yH_RJxYnf5sHX1LZLusY3Pzo33YpIhb2NNB8gzk20e9Bf773pNlEQhD6EQpOSQ3PSm3PvIeRUK9V23GnWTrRGCzPJpMAAfGkilTgVaV8yf5An3Ud-OxTDebK6z4Wx1nrxmQ2w6c_yzVTPMFQGX3jCgX9hxV0F4ueyTtealxKNQnnW01nxcJEDpYco24p5sHjkh3mK547OBskXo9aSkedgVpWB_vxVkPHfr7VJmt9pevR-SUBbZMVOtsm48ELYd1pXIgII6LVFV1_s5JzCQoGRF9Zb2t9WNMtu2CWwmaF1RR-KEfTxVBnqLTNRTOTxo3DhIfFLOf6gfdTLN0nRyYqrLptbKrAnGVUslcDePFRpCL9dCbdWC2PRcCSNFYACZKWMMDzimoepEUrCdpFHgJjkZSxL0dohjcl0YncJFUKJRCsX21hDR04mqYbtjDHOxS2X2j3SxJkavdZFM0aLSdr_4_4JWesWg_6o38vvDsg6gucVWa1D0qjeZvYIuL8qjz3iXzjVr4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+11th+International+Conference+on+Electrical%2C+Electronic+and+Computing+Engineering+%28IcETRAN%29&rft.atitle=Towards+Practical+Deployment%3A+Subject-Independent+EEG-Based+Mental+Workload+Classification+on+Assembly+Lines&rft.au=Pusica%2C+Milos&rft.au=Caiazzo%2C+Carlo&rft.au=Djapan%2C+Marko&rft.au=Savkovic%2C+Marija&rft.date=2024-06-03&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FIcETRAN62308.2024.10645152&rft.externalDocID=10645152 |