A High-Throughput Network Intrusion Detection System Using On-Device Learning on FPGA

Deploying machine learning (ML)/deep learning (DL)-based network intrusion detection system (NIDS) enables intelligent traffic analysis against the increasing sophistication of modern network traffic. However, most existing DL/ML-based NIDSs rely heavily on large-scale models and statistical-based f...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE International Symposium on Embedded Multicore/Manycore SoCs. Online) pp. 426 - 433
Main Authors Wu, Man, Kondo, Masaaki
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.12.2024
Subjects
Online AccessGet full text
ISSN2771-3075
DOI10.1109/MCSoC64144.2024.00076

Cover

Abstract Deploying machine learning (ML)/deep learning (DL)-based network intrusion detection system (NIDS) enables intelligent traffic analysis against the increasing sophistication of modern network traffic. However, most existing DL/ML-based NIDSs rely heavily on large-scale models and statistical-based features, which lead to the development of such NIDS for IoT devices being computationally expensive and low throughput, thereby falling against the ever-growing network bandwidth. In this work, we propose a new intrusion detection system on FPGA by using on-device learning to classify network traffic online at high throughput. In particular, the proposed NIDS first introduces the two-level hierarchical raw transmitted bytes for input features. Further, our NIDS employs a lightweight classifier by incorporating a genetic algorithm-based feature selector and on-device sequential learning semi-supervised anomaly detector (ONLAD). These three engines are implemented on the Xilinx ZCU104 FPGA platform for high throughput while supporting model updates online by the on-device learning mechanism. For proof of concept, our results on the CIC-IDS2018 dataset show that the proposed method reaches a maximum throughput of 3,302,010 pps and a supported bandwidth of 39.62 Gbps while maintaining 0.986 AUC score. Moreover, our NIDS allows model updates on-device with a power consumption of 0.703 W and latency of 4.17 us.
AbstractList Deploying machine learning (ML)/deep learning (DL)-based network intrusion detection system (NIDS) enables intelligent traffic analysis against the increasing sophistication of modern network traffic. However, most existing DL/ML-based NIDSs rely heavily on large-scale models and statistical-based features, which lead to the development of such NIDS for IoT devices being computationally expensive and low throughput, thereby falling against the ever-growing network bandwidth. In this work, we propose a new intrusion detection system on FPGA by using on-device learning to classify network traffic online at high throughput. In particular, the proposed NIDS first introduces the two-level hierarchical raw transmitted bytes for input features. Further, our NIDS employs a lightweight classifier by incorporating a genetic algorithm-based feature selector and on-device sequential learning semi-supervised anomaly detector (ONLAD). These three engines are implemented on the Xilinx ZCU104 FPGA platform for high throughput while supporting model updates online by the on-device learning mechanism. For proof of concept, our results on the CIC-IDS2018 dataset show that the proposed method reaches a maximum throughput of 3,302,010 pps and a supported bandwidth of 39.62 Gbps while maintaining 0.986 AUC score. Moreover, our NIDS allows model updates on-device with a power consumption of 0.703 W and latency of 4.17 us.
Author Wu, Man
Kondo, Masaaki
Author_xml – sequence: 1
  givenname: Man
  surname: Wu
  fullname: Wu, Man
  email: wu.man.wi5@acsl.ics.keio.ac.jp
  organization: Keio University,Department of Information and Computer Science,Yokohama,Japan
– sequence: 2
  givenname: Masaaki
  surname: Kondo
  fullname: Kondo, Masaaki
  email: kondo@acsl.ics.keio.ac.jp
  organization: Keio University,Department of Information and Computer Science,Yokohama,Japan
BookMark eNotjm1PwjAUhavRRMT9A036BzZv23W3_UiGvCQoJsBnMscdVKUjW8Hw7x3RT-fk5MnJc89ufO2JsScBiRBgn1_zRZ1nqUjTRIJMEwDA7IpFFq1RSmgFKYpr1pOIIlaA-o5FbfvZYUpCCkb32GrAJ267i5e7pj5ud4dj4G8Ufurmi099aI6tqz0fUqAyXNri3Aba81Xr_JbPfTykkyuJz6ho_GXqkNH7ePDAbqviu6XoP_tsOXpZ5pN4Nh9P88EsdlaE2OCGlLS6sJI6XYNWV0gZlbqTKwHlx6bYZFgIAyIzymRQVWQlGiytNAZUnz3-3ToiWh8aty-a81qAEVZrq34BV5lSiw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MCSoC64144.2024.00076
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331530471
EISSN 2771-3075
EndPage 433
ExternalDocumentID 10819559
Genre orig-research
GrantInformation_xml – fundername: Research and Development
  funderid: 10.13039/100006190
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i91t-87de3295a92e3318795f7e6ec5040c072bdad67a1801683860ffe92787c928803
IEDL.DBID RIE
IngestDate Wed Jan 15 06:21:25 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-87de3295a92e3318795f7e6ec5040c072bdad67a1801683860ffe92787c928803
PageCount 8
ParticipantIDs ieee_primary_10819559
PublicationCentury 2000
PublicationDate 2024-Dec.-16
PublicationDateYYYYMMDD 2024-12-16
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-16
  day: 16
PublicationDecade 2020
PublicationTitle Proceedings (IEEE International Symposium on Embedded Multicore/Manycore SoCs. Online)
PublicationTitleAbbrev MCSOC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204085
Score 1.8947617
Snippet Deploying machine learning (ML)/deep learning (DL)-based network intrusion detection system (NIDS) enables intelligent traffic analysis against the increasing...
SourceID ieee
SourceType Publisher
StartPage 426
SubjectTerms Bandwidth
Field programmable gate arrays
FPGA
Machine learning
Multicore processing
Network intrusion detection
Network intrusion detection system
on-device learning
Power demand
Real-time systems
semi-supervised learning
Table lookup
Telecommunication traffic
Throughput
Title A High-Throughput Network Intrusion Detection System Using On-Device Learning on FPGA
URI https://ieeexplore.ieee.org/document/10819559
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA22J734VdH6QQ5et2aTTbY5ltZahdaCLfRWssmsiLDtYXvx1zvJbmsRBG9LWNjNTJJhMu-9IeRegRMiSbPI5IAJSmZFZKTOojSXylmDbjGeKDyeqNE8eVnIRU1WD1wYAAjgM-j4x1DLdyu78VdluMN91UfqBmngOqvIWrsLFcGZV-uqWTox0w_j_tuqrxJMGTAP5F4lm3lpkb0uKiGIDI_JZPv5Cjvy2dmUWcd-_VJm_Pf_nZDWD1-PTneR6JQcQHFGjvakBs_JvEc9pCOaVX151puSTioEOH0uPPEC_UMHUAZkVkErIXMaAAX0tYgG4E8UWquxvlN8ZTh96rXIbPg464-iuqVC9KHjEo8-B4JraTQHIUKj8TwFBVai7SxLeeaMU6mJMW6prugqluegORrbao47XVyQZrEq4JJQ5XxBDzDbMyzJnDLMxtLY3DFuutywK9LyBlquK9GM5dY27T_Gr8mhd5JHisTqhjRx5nCL8b7M7oKfvwHyqamk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgDMDCVxHfeGBNcezYqceqpbTQhkqkElvl2BeEkNIO6cKvx3bSUiEhsVmWB-tO59P53nuH0J0Aw1gUZ4HKwRYomWaB4jIL4pwLo5V1i3JE4XEiBtPo6Y2_1WR1z4UBAA8-g5Zb-l6-meul-yqzEe66Plxuox2b-CNe0bXWXyqMEqfXVfN0QiLvx93XeVdEtmiwlSB1OtnEiYtszFHxaaR_gJLVBSr0yGdrWWYt_fVLm_HfNzxEzR_GHp6sc9ER2oLiGO1viA2eoGkHO1BHkFaTeRbLEicVBhwPC0e9sB7CPSg9NqvAlZQ59pAC_FIEPXBvCq71WN-xPdKfPHaaKO0_pN1BUA9VCD5kWNrHzwCjkitJgTE_ajyPQYDm1naaxDQzyohYhTZziTZrC5LnIKkNay2pjXV2ihrFvIAzhIVxLT2w9Z4iUWaEIjrkSueGUNWmipyjpjPQbFHJZsxWtrn4Y_8W7Q7S8Wg2GibPl2jPOczhRkJxhRrWCnBts3-Z3XiffwMG9Kzx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Symposium+on+Embedded+Multicore%2FManycore+SoCs.+Online%29&rft.atitle=A+High-Throughput+Network+Intrusion+Detection+System+Using+On-Device+Learning+on+FPGA&rft.au=Wu%2C+Man&rft.au=Kondo%2C+Masaaki&rft.date=2024-12-16&rft.pub=IEEE&rft.eissn=2771-3075&rft.spage=426&rft.epage=433&rft_id=info:doi/10.1109%2FMCSoC64144.2024.00076&rft.externalDocID=10819559