Predicting Cardiovascular Risk with Artificial Intelligence and Deep Learning
Through the application of artificial intelligence and deep learning techniques, this paper presents an innovative approach to predict the risk of developing atherosclerotic cardiovascular disease (ASCVD). We trained neural networks on a large dataset of electronic health records and risk factor dat...
Saved in:
Published in | 2024 4th Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS) pp. 469 - 472 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
24.02.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ACCTCS61748.2024.00088 |
Cover
Abstract | Through the application of artificial intelligence and deep learning techniques, this paper presents an innovative approach to predict the risk of developing atherosclerotic cardiovascular disease (ASCVD). We trained neural networks on a large dataset of electronic health records and risk factor data and evaluated their performance in predicting ASCVD risk in the next 10 years. Our results demonstrate that the neural networks achieved high accuracy, outperforming traditional risk prediction models. This approach has the potential to improve clinical decision-making in cardiovascular medicine and help clinicians develop more personalized treatment plans. Further research is needed to optimize the performance and generalizability of the neural network models for ASCVD risk prediction. |
---|---|
AbstractList | Through the application of artificial intelligence and deep learning techniques, this paper presents an innovative approach to predict the risk of developing atherosclerotic cardiovascular disease (ASCVD). We trained neural networks on a large dataset of electronic health records and risk factor data and evaluated their performance in predicting ASCVD risk in the next 10 years. Our results demonstrate that the neural networks achieved high accuracy, outperforming traditional risk prediction models. This approach has the potential to improve clinical decision-making in cardiovascular medicine and help clinicians develop more personalized treatment plans. Further research is needed to optimize the performance and generalizability of the neural network models for ASCVD risk prediction. |
Author | Hou, Kung-Hsu Chao, Chung-Hsing |
Author_xml | – sequence: 1 givenname: Kung-Hsu surname: Hou fullname: Hou, Kung-Hsu email: khoucloud@gmail.com organization: Minth University of Science and Technology,Hsinchu,Taiwan,China,30743 – sequence: 2 givenname: Chung-Hsing surname: Chao fullname: Chao, Chung-Hsing email: davidee@mitust.edu.tw organization: Minth University of Science and Technology,Hsinchu,Taiwan,China,30743 |
BookMark | eNotz99KwzAUgPEIeqFzbyCSF2g9aZrk5HLEPxtUFO39SJvTGazZSKvi2zvQq-_uB98FO037RIxdCyiFAHuzcq51r1qYGssKqroEAMQTtrTGolQglbWoztnjc6YQ-zmmHXc-h7j_8lP_OfrMX-L0zr_j_MZXeY5D7KMf-SbNNI5xR6kn7lPgt0QH3pDP6UhcsrPBjxMt_7tg7f1d69ZF8_SwcaumiFbMBeqKBATUSmm0tjfad6YOxoDtcCALkpQPBozGWgMOxwv0IEPlDVDXDXLBrv7YSETbQ44fPv9sBWhRoanlL2hKS_I |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ACCTCS61748.2024.00088 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350359985 |
EndPage | 472 |
ExternalDocumentID | 10612874 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i91t-862e10d86556899c76ab74d7709b8fe903e5ad707684608f6178a03d2a70ebbf3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 21 05:37:07 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-862e10d86556899c76ab74d7709b8fe903e5ad707684608f6178a03d2a70ebbf3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_10612874 |
PublicationCentury | 2000 |
PublicationDate | 2024-Feb.-24 |
PublicationDateYYYYMMDD | 2024-02-24 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-Feb.-24 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | 2024 4th Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS) |
PublicationTitleAbbrev | ACCTCS |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8631145 |
Snippet | Through the application of artificial intelligence and deep learning techniques, this paper presents an innovative approach to predict the risk of developing... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 469 |
SubjectTerms | artificial intelligence ASCVD Atherosclerosis Computational modeling Decision making Deep learning Electric potential Neural networks Predictive models |
Title | Predicting Cardiovascular Risk with Artificial Intelligence and Deep Learning |
URI | https://ieeexplore.ieee.org/document/10612874 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeD28mTihN_k4PXbq9N2yzHUR1T2Bg6YbeRNK8yBt2Y3cW_3rys0ykI3kIvKUng5eV9P9_H2F1ordJgVQBCCJegJCJwt9YkyDXICBKMCkk08nCUDl7jp2kyrWF1z8IgohefYZuGvpZvl_mGnso6lL6QP3uDNdw528JaNfUbgur0smySvbiQ7DVbEdliA3VU2Wub4qNG_4iNdvNtxSKL9qYy7fzjlxXjv3_omLW-AT0-_go9J-wAy1M2HK-p6kI6Zp79kJny5_n7gtOTK--tvTjInTr-uOfGyXVp-T3iiteGq28tNuk_TLJBUHdLCOYqrAKXmWAIljjT1OVQuUy1kbGVEpTpFqhAYKKt9IW3FLoFoYEahI20BDSmEGesWS5LPGc8zDFEqZQF7MaRtUanSWwjEwkJeYHFBWvRUsxWWz-M2W4VLv_4fsUOaTs8CB5fs2a13uCNC-WVufVb-Ako-p9b |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMcbxYOe1Ijxtz14HXTtutIjmRJQIERnwo2065shJIPguPjX25ahaGLibdllS7vku9f3_XwfQnehMVIRIwPCGLMFCmeB_WvlQaaIoIQDzYWjkQfDuPsaPY75uILVPQsDAN58Bg136Xv5Zp6t3FFZ05UvLp99F-1Z4Y_4GtequN-QyGY7SdLkxYqyd21RF4xN3EyVrcEpXjc6h2i4eeLaLjJrrErdyD5-hTH--5WOUP0b0cOjL_E5RjtQnKDBaOn6Ls7JjJMfRlP8PH2fYXfoittLbw-y3x3ubeVxYlUYfA-wwFXk6lsdpZ2HNOkG1byEYCrDMrC1CYTEONI0tlVUJmKlRWSEIFK3cpCEAVdG-NZbTFq5gwMVYYYqQUDrnJ2iWjEv4AzhMIMQhJSGQCuixmgV88hQTZkgWQ75Oaq7pZgs1okYk80qXPxx_xbtd9NBf9LvDZ8u0YHbGo-FR1eoVi5XcG2FvdQ3fjs_AbDSoqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+4th+Asia-Pacific+Conference+on+Communications+Technology+and+Computer+Science+%28ACCTCS%29&rft.atitle=Predicting+Cardiovascular+Risk+with+Artificial+Intelligence+and+Deep+Learning&rft.au=Hou%2C+Kung-Hsu&rft.au=Chao%2C+Chung-Hsing&rft.date=2024-02-24&rft.pub=IEEE&rft.spage=469&rft.epage=472&rft_id=info:doi/10.1109%2FACCTCS61748.2024.00088&rft.externalDocID=10612874 |