Predicting Cardiovascular Risk with Artificial Intelligence and Deep Learning

Through the application of artificial intelligence and deep learning techniques, this paper presents an innovative approach to predict the risk of developing atherosclerotic cardiovascular disease (ASCVD). We trained neural networks on a large dataset of electronic health records and risk factor dat...

Full description

Saved in:
Bibliographic Details
Published in2024 4th Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS) pp. 469 - 472
Main Authors Hou, Kung-Hsu, Chao, Chung-Hsing
Format Conference Proceeding
LanguageEnglish
Published IEEE 24.02.2024
Subjects
Online AccessGet full text
DOI10.1109/ACCTCS61748.2024.00088

Cover

Abstract Through the application of artificial intelligence and deep learning techniques, this paper presents an innovative approach to predict the risk of developing atherosclerotic cardiovascular disease (ASCVD). We trained neural networks on a large dataset of electronic health records and risk factor data and evaluated their performance in predicting ASCVD risk in the next 10 years. Our results demonstrate that the neural networks achieved high accuracy, outperforming traditional risk prediction models. This approach has the potential to improve clinical decision-making in cardiovascular medicine and help clinicians develop more personalized treatment plans. Further research is needed to optimize the performance and generalizability of the neural network models for ASCVD risk prediction.
AbstractList Through the application of artificial intelligence and deep learning techniques, this paper presents an innovative approach to predict the risk of developing atherosclerotic cardiovascular disease (ASCVD). We trained neural networks on a large dataset of electronic health records and risk factor data and evaluated their performance in predicting ASCVD risk in the next 10 years. Our results demonstrate that the neural networks achieved high accuracy, outperforming traditional risk prediction models. This approach has the potential to improve clinical decision-making in cardiovascular medicine and help clinicians develop more personalized treatment plans. Further research is needed to optimize the performance and generalizability of the neural network models for ASCVD risk prediction.
Author Hou, Kung-Hsu
Chao, Chung-Hsing
Author_xml – sequence: 1
  givenname: Kung-Hsu
  surname: Hou
  fullname: Hou, Kung-Hsu
  email: khoucloud@gmail.com
  organization: Minth University of Science and Technology,Hsinchu,Taiwan,China,30743
– sequence: 2
  givenname: Chung-Hsing
  surname: Chao
  fullname: Chao, Chung-Hsing
  email: davidee@mitust.edu.tw
  organization: Minth University of Science and Technology,Hsinchu,Taiwan,China,30743
BookMark eNotz99KwzAUgPEIeqFzbyCSF2g9aZrk5HLEPxtUFO39SJvTGazZSKvi2zvQq-_uB98FO037RIxdCyiFAHuzcq51r1qYGssKqroEAMQTtrTGolQglbWoztnjc6YQ-zmmHXc-h7j_8lP_OfrMX-L0zr_j_MZXeY5D7KMf-SbNNI5xR6kn7lPgt0QH3pDP6UhcsrPBjxMt_7tg7f1d69ZF8_SwcaumiFbMBeqKBATUSmm0tjfad6YOxoDtcCALkpQPBozGWgMOxwv0IEPlDVDXDXLBrv7YSETbQ44fPv9sBWhRoanlL2hKS_I
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACCTCS61748.2024.00088
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350359985
EndPage 472
ExternalDocumentID 10612874
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-862e10d86556899c76ab74d7709b8fe903e5ad707684608f6178a03d2a70ebbf3
IEDL.DBID RIE
IngestDate Wed Aug 21 05:37:07 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-862e10d86556899c76ab74d7709b8fe903e5ad707684608f6178a03d2a70ebbf3
PageCount 4
ParticipantIDs ieee_primary_10612874
PublicationCentury 2000
PublicationDate 2024-Feb.-24
PublicationDateYYYYMMDD 2024-02-24
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb.-24
  day: 24
PublicationDecade 2020
PublicationTitle 2024 4th Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS)
PublicationTitleAbbrev ACCTCS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8631145
Snippet Through the application of artificial intelligence and deep learning techniques, this paper presents an innovative approach to predict the risk of developing...
SourceID ieee
SourceType Publisher
StartPage 469
SubjectTerms artificial intelligence
ASCVD
Atherosclerosis
Computational modeling
Decision making
Deep learning
Electric potential
Neural networks
Predictive models
Title Predicting Cardiovascular Risk with Artificial Intelligence and Deep Learning
URI https://ieeexplore.ieee.org/document/10612874
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeD28mTihN_k4PXbq9N2yzHUR1T2Bg6YbeRNK8yBt2Y3cW_3rys0ykI3kIvKUng5eV9P9_H2F1ordJgVQBCCJegJCJwt9YkyDXICBKMCkk08nCUDl7jp2kyrWF1z8IgohefYZuGvpZvl_mGnso6lL6QP3uDNdw528JaNfUbgur0smySvbiQ7DVbEdliA3VU2Wub4qNG_4iNdvNtxSKL9qYy7fzjlxXjv3_omLW-AT0-_go9J-wAy1M2HK-p6kI6Zp79kJny5_n7gtOTK--tvTjInTr-uOfGyXVp-T3iiteGq28tNuk_TLJBUHdLCOYqrAKXmWAIljjT1OVQuUy1kbGVEpTpFqhAYKKt9IW3FLoFoYEahI20BDSmEGesWS5LPGc8zDFEqZQF7MaRtUanSWwjEwkJeYHFBWvRUsxWWz-M2W4VLv_4fsUOaTs8CB5fs2a13uCNC-WVufVb-Ako-p9b
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMcbxYOe1Ijxtz14HXTtutIjmRJQIERnwo2065shJIPguPjX25ahaGLibdllS7vku9f3_XwfQnehMVIRIwPCGLMFCmeB_WvlQaaIoIQDzYWjkQfDuPsaPY75uILVPQsDAN58Bg136Xv5Zp6t3FFZ05UvLp99F-1Z4Y_4GtequN-QyGY7SdLkxYqyd21RF4xN3EyVrcEpXjc6h2i4eeLaLjJrrErdyD5-hTH--5WOUP0b0cOjL_E5RjtQnKDBaOn6Ls7JjJMfRlP8PH2fYXfoittLbw-y3x3ubeVxYlUYfA-wwFXk6lsdpZ2HNOkG1byEYCrDMrC1CYTEONI0tlVUJmKlRWSEIFK3cpCEAVdG-NZbTFq5gwMVYYYqQUDrnJ2iWjEv4AzhMIMQhJSGQCuixmgV88hQTZkgWQ75Oaq7pZgs1okYk80qXPxx_xbtd9NBf9LvDZ8u0YHbGo-FR1eoVi5XcG2FvdQ3fjs_AbDSoqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+4th+Asia-Pacific+Conference+on+Communications+Technology+and+Computer+Science+%28ACCTCS%29&rft.atitle=Predicting+Cardiovascular+Risk+with+Artificial+Intelligence+and+Deep+Learning&rft.au=Hou%2C+Kung-Hsu&rft.au=Chao%2C+Chung-Hsing&rft.date=2024-02-24&rft.pub=IEEE&rft.spage=469&rft.epage=472&rft_id=info:doi/10.1109%2FACCTCS61748.2024.00088&rft.externalDocID=10612874