Efficient Relation Extraction of Automobile Faults Based on Hidden Knowledge in Prompt Tuning Templates

In this paper, we propose a relation extraction method based on the Prompt Tuning (PT) technique, which aims to improve the accuracy and efficiency of knowledge extraction in automotive fault texts. The method can be effectively applied to long-tail or less resourceful situations by mining the hidde...

Full description

Saved in:
Bibliographic Details
Published inPhotonics & Electromagnetics Research Symposium (Online) pp. 1 - 6
Main Authors Zhang, Kai, Yan, Shujia, Chen, Qiang, Gao, Yingjie, Tong, Mei Song
Format Conference Proceeding
LanguageEnglish
Published IEEE 21.04.2024
Subjects
Online AccessGet full text
ISSN2831-5804
DOI10.1109/PIERS62282.2024.10618078

Cover

Loading…
Abstract In this paper, we propose a relation extraction method based on the Prompt Tuning (PT) technique, which aims to improve the accuracy and efficiency of knowledge extraction in automotive fault texts. The method can be effectively applied to long-tail or less resourceful situations by mining the hidden knowledge in templates. Experimental results demonstrate that the method performs better in dealing with long-tailed data with a minimal small of relation labels, successfully overcoming issues such as catastrophic forgetting and misrecognition. In a data ratio of approximately 15:1, the predicted F1 values for relation labels (representing performance failures) are improved by 4.15%, 1.24%, 1.26%, and 0.03%, respectively, compared to the best results obtained from the comparison model. Finally, the extracted triples (subject, relation, object) are imported into the Neo4j graph database to realize intelligent retrieval of automotive faults.
AbstractList In this paper, we propose a relation extraction method based on the Prompt Tuning (PT) technique, which aims to improve the accuracy and efficiency of knowledge extraction in automotive fault texts. The method can be effectively applied to long-tail or less resourceful situations by mining the hidden knowledge in templates. Experimental results demonstrate that the method performs better in dealing with long-tailed data with a minimal small of relation labels, successfully overcoming issues such as catastrophic forgetting and misrecognition. In a data ratio of approximately 15:1, the predicted F1 values for relation labels (representing performance failures) are improved by 4.15%, 1.24%, 1.26%, and 0.03%, respectively, compared to the best results obtained from the comparison model. Finally, the extracted triples (subject, relation, object) are imported into the Neo4j graph database to realize intelligent retrieval of automotive faults.
Author Chen, Qiang
Zhang, Kai
Yan, Shujia
Gao, Yingjie
Tong, Mei Song
Author_xml – sequence: 1
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
  organization: Shanghai University of Engineering Science,Shanghai,China,201620
– sequence: 2
  givenname: Shujia
  surname: Yan
  fullname: Yan, Shujia
  organization: Shanghai University of Engineering Science,Shanghai,China,201620
– sequence: 3
  givenname: Qiang
  surname: Chen
  fullname: Chen, Qiang
  organization: Shanghai University of Engineering Science,Shanghai,China,201620
– sequence: 4
  givenname: Yingjie
  surname: Gao
  fullname: Gao, Yingjie
  organization: Shanghai University of Engineering Science,Shanghai,China,201620
– sequence: 5
  givenname: Mei Song
  surname: Tong
  fullname: Tong, Mei Song
  organization: Tongji University,Shanghai,China,201804
BookMark eNo1UNtOwzAUCwgkxtgf8JAf6DhJ1yZ5HFN3EZOYRt-nLDmZgtpkajMBf0_F5cmWLVm278lNiAEJoQymjIF62m2q_VvJueRTDnw2ZVAyCUJekYkSSuYF5KJQoK7JiMucZYWE2R2Z9P07AOScMSHViJwq57zxGBLdY6OTj4FWn6nT5odGR-eXFNt49A3Spb40qafPukdLB3ftrcVAX0L8aNCekPpAd11sz4nWl-DDidbYnodU7B_IrdNNj5M_HJN6WdWLdbZ9XW0W823mFUuZLAyW2g71AZ3hbiaNVGCdcaBACq4GjXHLUUt2RMFLNGUBzrJhqBXsmI_J42-sR8TDufOt7r4O_9fk3xOrXAo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PIERS62282.2024.10618078
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350375909
EISSN 2831-5804
EndPage 6
ExternalDocumentID 10618078
Genre orig-research
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i91t-85ce6ad7980efc2f48c890dfcf0908729c2f12d2ea81be726ec650fd1590d71b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:34:34 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-85ce6ad7980efc2f48c890dfcf0908729c2f12d2ea81be726ec650fd1590d71b3
PageCount 6
ParticipantIDs ieee_primary_10618078
PublicationCentury 2000
PublicationDate 2024-April-21
PublicationDateYYYYMMDD 2024-04-21
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-21
  day: 21
PublicationDecade 2020
PublicationTitle Photonics & Electromagnetics Research Symposium (Online)
PublicationTitleAbbrev PIERS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211789
Score 1.8700581
Snippet In this paper, we propose a relation extraction method based on the Prompt Tuning (PT) technique, which aims to improve the accuracy and efficiency of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Automobiles
Data mining
Data models
Predictive models
Task analysis
Training data
Title Efficient Relation Extraction of Automobile Faults Based on Hidden Knowledge in Prompt Tuning Templates
URI https://ieeexplore.ieee.org/document/10618078
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ08qTvwmB6_t0rRNmqNKx1QcQyvsNpaPynBrx0xB_Ot9adeJguClhITQkJC83_v6PYSuFGEqBtjvhWEUeq6GtSd0EsOHc8NiKmVNPP84YsOX6H4STzbJ6nUujDGmDj4zvmvWvnxdqsqZyvpOfXH86B3UAc2tSdbaGlRCUGV4ItpoHSL647v06ZlRUCpAD6SR307_UUilliODPTRqV9CEj7z5lZW--vxFzvjvJe6j3nfKHh5vhdEB2jHFIXpNa4IImIHboDecfth1k8yAyxxfV7ZclhKeBjyYVQv7jm9ArGkMo0NHLlLgh9bohueF-8NyZXFWOWsKzsxytXBYtYeyQZrdDr1NZQVvLgLrJbEybKa5SIjJFc2jRCWC6FzlRJAE4Db0BVRTMwNQazhlRgGQyzVAH6J5IMMj1C3KwhwjzJnKmXOvErjYcWTg7RTaMEmZBCjA1QnquU2arhrujGm7P6d_9J-hXXdWzl9Dg3PUtevKXIDYt_KyPu4v1susHw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D3pSceK3OXhtl6Zt0hxVOqr7YGiF3caapDLc2jFbEP96X9p1oiB4KSGhaUho3u99_R5CN5Iw6QPst1zXcy1Tw9oSKvDhwblmPk2Sinh-MGTRi_c49sfrZPUqF0ZrXQWfads0K1--ymVpTGUdo74YfvRttAOC3xN1utbGpOKCMsMD0cTrENEZPYRPz4yCWgGaIPXsZoIfpVQqSdLdR8NmDXUAyZtdFoktP3_RM_57kQeo_Z20h0cbcXSItnR2hF7DiiIC3sBN2BsOP4pVnc6A8xTflkW-yBO4HHB3Ws6Ld3wHgk1hGI0MvUiGe43ZDc8y84XFssBxaewpONaL5dyg1TaKu2F8H1nr2grWTDiFFfhSs6niIiA6lTT1AhkIolKZEkECANzQ51BF9RRgreaUaQlQLlUAfojiTuIeo1aWZ_oEYc5kyoyDlcCv7Xsabk-hNEsoSwAMcHmK2maTJsuaPWPS7M_ZH_3XaDeKB_1J_2HYO0d75tyM94Y6F6hVrEp9CSCgSK6qo_8CDoOvbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Photonics+%26+Electromagnetics+Research+Symposium+%28Online%29&rft.atitle=Efficient+Relation+Extraction+of+Automobile+Faults+Based+on+Hidden+Knowledge+in+Prompt+Tuning+Templates&rft.au=Zhang%2C+Kai&rft.au=Yan%2C+Shujia&rft.au=Chen%2C+Qiang&rft.au=Gao%2C+Yingjie&rft.date=2024-04-21&rft.pub=IEEE&rft.eissn=2831-5804&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FPIERS62282.2024.10618078&rft.externalDocID=10618078