Efficient Relation Extraction of Automobile Faults Based on Hidden Knowledge in Prompt Tuning Templates
In this paper, we propose a relation extraction method based on the Prompt Tuning (PT) technique, which aims to improve the accuracy and efficiency of knowledge extraction in automotive fault texts. The method can be effectively applied to long-tail or less resourceful situations by mining the hidde...
Saved in:
Published in | Photonics & Electromagnetics Research Symposium (Online) pp. 1 - 6 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
21.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2831-5804 |
DOI | 10.1109/PIERS62282.2024.10618078 |
Cover
Loading…
Abstract | In this paper, we propose a relation extraction method based on the Prompt Tuning (PT) technique, which aims to improve the accuracy and efficiency of knowledge extraction in automotive fault texts. The method can be effectively applied to long-tail or less resourceful situations by mining the hidden knowledge in templates. Experimental results demonstrate that the method performs better in dealing with long-tailed data with a minimal small of relation labels, successfully overcoming issues such as catastrophic forgetting and misrecognition. In a data ratio of approximately 15:1, the predicted F1 values for relation labels (representing performance failures) are improved by 4.15%, 1.24%, 1.26%, and 0.03%, respectively, compared to the best results obtained from the comparison model. Finally, the extracted triples (subject, relation, object) are imported into the Neo4j graph database to realize intelligent retrieval of automotive faults. |
---|---|
AbstractList | In this paper, we propose a relation extraction method based on the Prompt Tuning (PT) technique, which aims to improve the accuracy and efficiency of knowledge extraction in automotive fault texts. The method can be effectively applied to long-tail or less resourceful situations by mining the hidden knowledge in templates. Experimental results demonstrate that the method performs better in dealing with long-tailed data with a minimal small of relation labels, successfully overcoming issues such as catastrophic forgetting and misrecognition. In a data ratio of approximately 15:1, the predicted F1 values for relation labels (representing performance failures) are improved by 4.15%, 1.24%, 1.26%, and 0.03%, respectively, compared to the best results obtained from the comparison model. Finally, the extracted triples (subject, relation, object) are imported into the Neo4j graph database to realize intelligent retrieval of automotive faults. |
Author | Chen, Qiang Zhang, Kai Yan, Shujia Gao, Yingjie Tong, Mei Song |
Author_xml | – sequence: 1 givenname: Kai surname: Zhang fullname: Zhang, Kai organization: Shanghai University of Engineering Science,Shanghai,China,201620 – sequence: 2 givenname: Shujia surname: Yan fullname: Yan, Shujia organization: Shanghai University of Engineering Science,Shanghai,China,201620 – sequence: 3 givenname: Qiang surname: Chen fullname: Chen, Qiang organization: Shanghai University of Engineering Science,Shanghai,China,201620 – sequence: 4 givenname: Yingjie surname: Gao fullname: Gao, Yingjie organization: Shanghai University of Engineering Science,Shanghai,China,201620 – sequence: 5 givenname: Mei Song surname: Tong fullname: Tong, Mei Song organization: Tongji University,Shanghai,China,201804 |
BookMark | eNo1UNtOwzAUCwgkxtgf8JAf6DhJ1yZ5HFN3EZOYRt-nLDmZgtpkajMBf0_F5cmWLVm278lNiAEJoQymjIF62m2q_VvJueRTDnw2ZVAyCUJekYkSSuYF5KJQoK7JiMucZYWE2R2Z9P07AOScMSHViJwq57zxGBLdY6OTj4FWn6nT5odGR-eXFNt49A3Spb40qafPukdLB3ftrcVAX0L8aNCekPpAd11sz4nWl-DDidbYnodU7B_IrdNNj5M_HJN6WdWLdbZ9XW0W823mFUuZLAyW2g71AZ3hbiaNVGCdcaBACq4GjXHLUUt2RMFLNGUBzrJhqBXsmI_J42-sR8TDufOt7r4O_9fk3xOrXAo |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/PIERS62282.2024.10618078 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350375909 |
EISSN | 2831-5804 |
EndPage | 6 |
ExternalDocumentID | 10618078 |
Genre | orig-research |
GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i91t-85ce6ad7980efc2f48c890dfcf0908729c2f12d2ea81be726ec650fd1590d71b3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:34:34 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-85ce6ad7980efc2f48c890dfcf0908729c2f12d2ea81be726ec650fd1590d71b3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10618078 |
PublicationCentury | 2000 |
PublicationDate | 2024-April-21 |
PublicationDateYYYYMMDD | 2024-04-21 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-April-21 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | Photonics & Electromagnetics Research Symposium (Online) |
PublicationTitleAbbrev | PIERS |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211789 |
Score | 1.8700581 |
Snippet | In this paper, we propose a relation extraction method based on the Prompt Tuning (PT) technique, which aims to improve the accuracy and efficiency of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Automobiles Data mining Data models Predictive models Task analysis Training data |
Title | Efficient Relation Extraction of Automobile Faults Based on Hidden Knowledge in Prompt Tuning Templates |
URI | https://ieeexplore.ieee.org/document/10618078 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ08qTvwmB6_t0rRNmqNKx1QcQyvsNpaPynBrx0xB_Ot9adeJguClhITQkJC83_v6PYSuFGEqBtjvhWEUeq6GtSd0EsOHc8NiKmVNPP84YsOX6H4STzbJ6nUujDGmDj4zvmvWvnxdqsqZyvpOfXH86B3UAc2tSdbaGlRCUGV4ItpoHSL647v06ZlRUCpAD6SR307_UUilliODPTRqV9CEj7z5lZW--vxFzvjvJe6j3nfKHh5vhdEB2jHFIXpNa4IImIHboDecfth1k8yAyxxfV7ZclhKeBjyYVQv7jm9ArGkMo0NHLlLgh9bohueF-8NyZXFWOWsKzsxytXBYtYeyQZrdDr1NZQVvLgLrJbEybKa5SIjJFc2jRCWC6FzlRJAE4Db0BVRTMwNQazhlRgGQyzVAH6J5IMMj1C3KwhwjzJnKmXOvErjYcWTg7RTaMEmZBCjA1QnquU2arhrujGm7P6d_9J-hXXdWzl9Dg3PUtevKXIDYt_KyPu4v1susHw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D3pSceK3OXhtl6Zt0hxVOqr7YGiF3caapDLc2jFbEP96X9p1oiB4KSGhaUho3u99_R5CN5Iw6QPst1zXcy1Tw9oSKvDhwblmPk2Sinh-MGTRi_c49sfrZPUqF0ZrXQWfads0K1--ymVpTGUdo74YfvRttAOC3xN1utbGpOKCMsMD0cTrENEZPYRPz4yCWgGaIPXsZoIfpVQqSdLdR8NmDXUAyZtdFoktP3_RM_57kQeo_Z20h0cbcXSItnR2hF7DiiIC3sBN2BsOP4pVnc6A8xTflkW-yBO4HHB3Ws6Ld3wHgk1hGI0MvUiGe43ZDc8y84XFssBxaewpONaL5dyg1TaKu2F8H1nr2grWTDiFFfhSs6niIiA6lTT1AhkIolKZEkECANzQ51BF9RRgreaUaQlQLlUAfojiTuIeo1aWZ_oEYc5kyoyDlcCv7Xsabk-hNEsoSwAMcHmK2maTJsuaPWPS7M_ZH_3XaDeKB_1J_2HYO0d75tyM94Y6F6hVrEp9CSCgSK6qo_8CDoOvbw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Photonics+%26+Electromagnetics+Research+Symposium+%28Online%29&rft.atitle=Efficient+Relation+Extraction+of+Automobile+Faults+Based+on+Hidden+Knowledge+in+Prompt+Tuning+Templates&rft.au=Zhang%2C+Kai&rft.au=Yan%2C+Shujia&rft.au=Chen%2C+Qiang&rft.au=Gao%2C+Yingjie&rft.date=2024-04-21&rft.pub=IEEE&rft.eissn=2831-5804&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FPIERS62282.2024.10618078&rft.externalDocID=10618078 |