Composite Learning Cartesian Impedance Control Under Uncertain Robot Dynamics

Cartesian impedance control plays a significant role in improving the safety and compliance of robot end-effectors when executing collaborative tasks with humans or environments. However, achieving target impedance is challenging under uncertain robot dynamics. In this study, we raise a composite le...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Industrial Informatics (INDIN) pp. 1 - 5
Main Authors Pan, Yongping, Ling, Kaiwei, Shi, Tian, Li, Weibing
Format Conference Proceeding
LanguageEnglish
Published IEEE 18.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cartesian impedance control plays a significant role in improving the safety and compliance of robot end-effectors when executing collaborative tasks with humans or environments. However, achieving target impedance is challenging under uncertain robot dynamics. In this study, we raise a composite learning-based Cartesian impedance control method to ensure exact Cartesian trajectory tracking in free motion and Cartesian target impedance in interaction under uncertain robot dynamics. Introducing a composite learning update to precise robot modeling online, so the exponential convergence and passivity of the closed-loop robot dynamics are guaranteed under a weak condition known as interval excitation. The efficacy and superiority of this method have been demonstrated through experiments on a collaborative robot with 7 degrees of freedom known as Franka Emika Panda.
AbstractList Cartesian impedance control plays a significant role in improving the safety and compliance of robot end-effectors when executing collaborative tasks with humans or environments. However, achieving target impedance is challenging under uncertain robot dynamics. In this study, we raise a composite learning-based Cartesian impedance control method to ensure exact Cartesian trajectory tracking in free motion and Cartesian target impedance in interaction under uncertain robot dynamics. Introducing a composite learning update to precise robot modeling online, so the exponential convergence and passivity of the closed-loop robot dynamics are guaranteed under a weak condition known as interval excitation. The efficacy and superiority of this method have been demonstrated through experiments on a collaborative robot with 7 degrees of freedom known as Franka Emika Panda.
Author Li, Weibing
Ling, Kaiwei
Shi, Tian
Pan, Yongping
Author_xml – sequence: 1
  givenname: Yongping
  surname: Pan
  fullname: Pan, Yongping
  email: panyongp@mail.sysu.edu.cn
  organization: School of Advanced Manufacturing, Sun Yat-sen University,Shenzhen,China,518107
– sequence: 2
  givenname: Kaiwei
  surname: Ling
  fullname: Ling, Kaiwei
  email: lingkw@mail2.sysu.edu.cn
  organization: School of Advanced Manufacturing, Sun Yat-sen University,Shenzhen,China,518107
– sequence: 3
  givenname: Tian
  surname: Shi
  fullname: Shi, Tian
  email: shit23@mail2.sysu.edu.cn
  organization: School of Computer Science and Engineering, Sun Yat-sen University,Guangzhou,China,510006
– sequence: 4
  givenname: Weibing
  surname: Li
  fullname: Li, Weibing
  email: liwb53@mail.sysu.edu.cn
  organization: School of Computer Science and Engineering, Sun Yat-sen University,Guangzhou,China,510006
BookMark eNo1j8tOwzAUBQ0Cibb0D1j4B1L8zLWXKOURKRQJFYld5cQ3yKixIyeb_j2VgM2Z3WjOklzFFJEQytmGc2bv69223mkjjdgIJtSGMwClVXlB1haskZJrAQr4JVkICaaQpfy8Ictp-mZMa67KBXmt0jCmKcxIG3Q5hvhFK5dnnIKLtB5G9C52SKsU55yO9CN6zOftMM8uRPqe2jTT7Sm6IXTTLbnu3XHC9R9XZP_0uK9eiubtua4emiJYPhfmnCS47zrOTIngdde34Jkz0CumpZWl962zqlW-tT32AsDJlgnggLy3TK7I3a82IOJhzGFw-XT4fy9_AFnWUfQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/INDIN58382.2024.10774546
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL) - NZ
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331527471
EISSN 2378-363X
EndPage 5
ExternalDocumentID 10774546
Genre orig-research
GroupedDBID 6IE
6IK
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i91t-847121dcc1086e7d5cfb7d0a87f4053936ddba94b4db9fef277a3b02717e1f903
IEDL.DBID RIE
IngestDate Wed Aug 27 02:33:33 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-847121dcc1086e7d5cfb7d0a87f4053936ddba94b4db9fef277a3b02717e1f903
PageCount 5
ParticipantIDs ieee_primary_10774546
PublicationCentury 2000
PublicationDate 2024-Aug.-18
PublicationDateYYYYMMDD 2024-08-18
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug.-18
  day: 18
PublicationDecade 2020
PublicationTitle IEEE International Conference on Industrial Informatics (INDIN)
PublicationTitleAbbrev INDIN
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0055146
Score 2.2658548
Snippet Cartesian impedance control plays a significant role in improving the safety and compliance of robot end-effectors when executing collaborative tasks with...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Adaptive control
Collaborative robots
Dynamics
End effectors
Impedance
impedance control
Informatics
Parameter estimation
parametric uncertainty
robot dynamics
robot inter-active control
Safety
Stability
Trajectory tracking
Title Composite Learning Cartesian Impedance Control Under Uncertain Robot Dynamics
URI https://ieeexplore.ieee.org/document/10774546
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7cPenF14pvcvDa2qRp0px3XXaFLSIr7G1pXiLCVrR78debabe-QPBSSiGkZEi-mcn3zQBceVqGqCBHXljpIi4NizS3SZQpo7xXimceUwOzQkwe-O0iW2zE6o0WxjnXkM9cjK_NXb6tzBpTZWGHB2cl46IHvRC5tWKt7thF5BcdVSdR19NiNC3wThDVVozH3dgfXVQaEBnvQtFN33JHnuN1rWPz_qsy47__bw8GX3o9cveJRPuw5VYHsPOt1OAhzHDjI0HLkU1J1UcyRD4niijJNDjPFu1Phi11nTT9kMLTtJQBcl_pqiajtn_92wDm45v5cBJtWilET4rWEUIQo9YY7KvkpM2M19ImZS59cNhSlQprdal4MJNW3nkmZZnqELFS6ahXSXoE_VW1csdAuKaGiVwnhgsuhS-Dh6SYMcGVNCxx6gQGuDDLl7ZYxrJbk9M_vp_BNtoH07Q0P4d-_bp2FwHna33Z2PcDYYmngg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HtSLr4pv9-A1Mdlsstlza2m0DSIVeivZl0ihEU0v_np3ksYXCF5CCASWnWy-2dnvmw_gyoaF2xWkyAsrjMe4op5kOvBioYS1QrDYYmlgnCfDR3Y7jacrsXqthTHG1OQz4-NtfZavS7XEUplb4S5ZiVmyDhsO-GPayLXaHy9if9KSdQJxneX9LMdTQdRbUea3b__wUalhZLADeTuAhj0y95eV9NX7r96M_x7hLnS_FHvk_hOL9mDNLPZh-1uzwQMY49JHipYhq6aqT6SHjE6UUZLMpc8avwDSa8jrpHZEclfVkAbIQynLivQbB_u3LkwGN5Pe0FuZKXjPIqw8BCEaaqXQWclwHSsruQ6KlFuXskUiSrSWhWAuUFJYYynnRSTdnjXkJrQiiA6hsygX5ggIk6GiSSoDxRLGE1u4HElQpVwyqWhgxDF0cWJmL027jFk7Jyd_PL-EzeFkPJqNsvzuFLYwVli0DdMz6FSvS3PuUL-SF3WsPwBRMarM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Industrial+Informatics+%28INDIN%29&rft.atitle=Composite+Learning+Cartesian+Impedance+Control+Under+Uncertain+Robot+Dynamics&rft.au=Pan%2C+Yongping&rft.au=Ling%2C+Kaiwei&rft.au=Shi%2C+Tian&rft.au=Li%2C+Weibing&rft.date=2024-08-18&rft.pub=IEEE&rft.eissn=2378-363X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FINDIN58382.2024.10774546&rft.externalDocID=10774546