Composite Learning Cartesian Impedance Control Under Uncertain Robot Dynamics
Cartesian impedance control plays a significant role in improving the safety and compliance of robot end-effectors when executing collaborative tasks with humans or environments. However, achieving target impedance is challenging under uncertain robot dynamics. In this study, we raise a composite le...
Saved in:
Published in | IEEE International Conference on Industrial Informatics (INDIN) pp. 1 - 5 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
18.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cartesian impedance control plays a significant role in improving the safety and compliance of robot end-effectors when executing collaborative tasks with humans or environments. However, achieving target impedance is challenging under uncertain robot dynamics. In this study, we raise a composite learning-based Cartesian impedance control method to ensure exact Cartesian trajectory tracking in free motion and Cartesian target impedance in interaction under uncertain robot dynamics. Introducing a composite learning update to precise robot modeling online, so the exponential convergence and passivity of the closed-loop robot dynamics are guaranteed under a weak condition known as interval excitation. The efficacy and superiority of this method have been demonstrated through experiments on a collaborative robot with 7 degrees of freedom known as Franka Emika Panda. |
---|---|
AbstractList | Cartesian impedance control plays a significant role in improving the safety and compliance of robot end-effectors when executing collaborative tasks with humans or environments. However, achieving target impedance is challenging under uncertain robot dynamics. In this study, we raise a composite learning-based Cartesian impedance control method to ensure exact Cartesian trajectory tracking in free motion and Cartesian target impedance in interaction under uncertain robot dynamics. Introducing a composite learning update to precise robot modeling online, so the exponential convergence and passivity of the closed-loop robot dynamics are guaranteed under a weak condition known as interval excitation. The efficacy and superiority of this method have been demonstrated through experiments on a collaborative robot with 7 degrees of freedom known as Franka Emika Panda. |
Author | Li, Weibing Ling, Kaiwei Shi, Tian Pan, Yongping |
Author_xml | – sequence: 1 givenname: Yongping surname: Pan fullname: Pan, Yongping email: panyongp@mail.sysu.edu.cn organization: School of Advanced Manufacturing, Sun Yat-sen University,Shenzhen,China,518107 – sequence: 2 givenname: Kaiwei surname: Ling fullname: Ling, Kaiwei email: lingkw@mail2.sysu.edu.cn organization: School of Advanced Manufacturing, Sun Yat-sen University,Shenzhen,China,518107 – sequence: 3 givenname: Tian surname: Shi fullname: Shi, Tian email: shit23@mail2.sysu.edu.cn organization: School of Computer Science and Engineering, Sun Yat-sen University,Guangzhou,China,510006 – sequence: 4 givenname: Weibing surname: Li fullname: Li, Weibing email: liwb53@mail.sysu.edu.cn organization: School of Computer Science and Engineering, Sun Yat-sen University,Guangzhou,China,510006 |
BookMark | eNo1j8tOwzAUBQ0Cibb0D1j4B1L8zLWXKOURKRQJFYld5cQ3yKixIyeb_j2VgM2Z3WjOklzFFJEQytmGc2bv69223mkjjdgIJtSGMwClVXlB1haskZJrAQr4JVkICaaQpfy8Ictp-mZMa67KBXmt0jCmKcxIG3Q5hvhFK5dnnIKLtB5G9C52SKsU55yO9CN6zOftMM8uRPqe2jTT7Sm6IXTTLbnu3XHC9R9XZP_0uK9eiubtua4emiJYPhfmnCS47zrOTIngdde34Jkz0CumpZWl962zqlW-tT32AsDJlgnggLy3TK7I3a82IOJhzGFw-XT4fy9_AFnWUfQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/INDIN58382.2024.10774546 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) - NZ IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798331527471 |
EISSN | 2378-363X |
EndPage | 5 |
ExternalDocumentID | 10774546 |
Genre | orig-research |
GroupedDBID | 6IE 6IK 6IL 6IN AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i91t-847121dcc1086e7d5cfb7d0a87f4053936ddba94b4db9fef277a3b02717e1f903 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:33:33 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-847121dcc1086e7d5cfb7d0a87f4053936ddba94b4db9fef277a3b02717e1f903 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10774546 |
PublicationCentury | 2000 |
PublicationDate | 2024-Aug.-18 |
PublicationDateYYYYMMDD | 2024-08-18 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-Aug.-18 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | IEEE International Conference on Industrial Informatics (INDIN) |
PublicationTitleAbbrev | INDIN |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0055146 |
Score | 2.2658548 |
Snippet | Cartesian impedance control plays a significant role in improving the safety and compliance of robot end-effectors when executing collaborative tasks with... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Adaptive control Collaborative robots Dynamics End effectors Impedance impedance control Informatics Parameter estimation parametric uncertainty robot dynamics robot inter-active control Safety Stability Trajectory tracking |
Title | Composite Learning Cartesian Impedance Control Under Uncertain Robot Dynamics |
URI | https://ieeexplore.ieee.org/document/10774546 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7cPenF14pvcvDa2qRp0px3XXaFLSIr7G1pXiLCVrR78debabe-QPBSSiGkZEi-mcn3zQBceVqGqCBHXljpIi4NizS3SZQpo7xXimceUwOzQkwe-O0iW2zE6o0WxjnXkM9cjK_NXb6tzBpTZWGHB2cl46IHvRC5tWKt7thF5BcdVSdR19NiNC3wThDVVozH3dgfXVQaEBnvQtFN33JHnuN1rWPz_qsy47__bw8GX3o9cveJRPuw5VYHsPOt1OAhzHDjI0HLkU1J1UcyRD4niijJNDjPFu1Phi11nTT9kMLTtJQBcl_pqiajtn_92wDm45v5cBJtWilET4rWEUIQo9YY7KvkpM2M19ImZS59cNhSlQprdal4MJNW3nkmZZnqELFS6ahXSXoE_VW1csdAuKaGiVwnhgsuhS-Dh6SYMcGVNCxx6gQGuDDLl7ZYxrJbk9M_vp_BNtoH07Q0P4d-_bp2FwHna33Z2PcDYYmngg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HtSLr4pv9-A1Mdlsstlza2m0DSIVeivZl0ihEU0v_np3ksYXCF5CCASWnWy-2dnvmw_gyoaF2xWkyAsrjMe4op5kOvBioYS1QrDYYmlgnCfDR3Y7jacrsXqthTHG1OQz4-NtfZavS7XEUplb4S5ZiVmyDhsO-GPayLXaHy9if9KSdQJxneX9LMdTQdRbUea3b__wUalhZLADeTuAhj0y95eV9NX7r96M_x7hLnS_FHvk_hOL9mDNLPZh-1uzwQMY49JHipYhq6aqT6SHjE6UUZLMpc8avwDSa8jrpHZEclfVkAbIQynLivQbB_u3LkwGN5Pe0FuZKXjPIqw8BCEaaqXQWclwHSsruQ6KlFuXskUiSrSWhWAuUFJYYynnRSTdnjXkJrQiiA6hsygX5ggIk6GiSSoDxRLGE1u4HElQpVwyqWhgxDF0cWJmL027jFk7Jyd_PL-EzeFkPJqNsvzuFLYwVli0DdMz6FSvS3PuUL-SF3WsPwBRMarM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Industrial+Informatics+%28INDIN%29&rft.atitle=Composite+Learning+Cartesian+Impedance+Control+Under+Uncertain+Robot+Dynamics&rft.au=Pan%2C+Yongping&rft.au=Ling%2C+Kaiwei&rft.au=Shi%2C+Tian&rft.au=Li%2C+Weibing&rft.date=2024-08-18&rft.pub=IEEE&rft.eissn=2378-363X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FINDIN58382.2024.10774546&rft.externalDocID=10774546 |