Machine Learning Approaches for Predictive Maintenance in Industrial Operations

Predictive maintenance (PdM) has emerged as a transformative approach for enhancing industrial efficiency and reliability, leveraging machine learning (ML) techniques for real-time data analysis and anomaly detection. This study proposes a hybrid PdM framework integrating advanced ML models, includi...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Confernce on Computational Intelligence and Communication Networks) pp. 365 - 372
Main Author Alshahrani, Najim
Format Conference Proceeding
LanguageEnglish
Published IEEE 22.12.2024
Subjects
Online AccessGet full text
ISSN2472-7555
DOI10.1109/CICN63059.2024.10847337

Cover

Abstract Predictive maintenance (PdM) has emerged as a transformative approach for enhancing industrial efficiency and reliability, leveraging machine learning (ML) techniques for real-time data analysis and anomaly detection. This study proposes a hybrid PdM framework integrating advanced ML models, including Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, Autoregressive Integrated Moving Average (ARIMA), Isolation Forest, and One-Class SVM. Using IoT-enabled sensor data capturing parameters like vibration, temperature, and pressure, the framework demonstrates significant improvements. Key findings reveal that CNNs achieved 92% accuracy in early anomaly detection, while the combined LSTM-ARIMA model provided forecasting accuracy of 87% and reduced errors by 25% compared to standalone models. Isolation Forest and One-Class SVM achieved anomaly detection precision of 93% and recall of 88%. The framework reduced unplanned downtime by 54% and maintenance costs by 32% across tested scenarios. This study contributes to the existing body of knowledge by presenting a robust hybrid modeling approach that integrates statistical and deep learning methods to address fault prediction and maintenance scheduling limitations. Practical implications include improved maintenance efficiency, extended equipment lifespan, and enhanced industry decision-making capabilities, making the framework highly relevant for Industry 4.0 applications.
AbstractList Predictive maintenance (PdM) has emerged as a transformative approach for enhancing industrial efficiency and reliability, leveraging machine learning (ML) techniques for real-time data analysis and anomaly detection. This study proposes a hybrid PdM framework integrating advanced ML models, including Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, Autoregressive Integrated Moving Average (ARIMA), Isolation Forest, and One-Class SVM. Using IoT-enabled sensor data capturing parameters like vibration, temperature, and pressure, the framework demonstrates significant improvements. Key findings reveal that CNNs achieved 92% accuracy in early anomaly detection, while the combined LSTM-ARIMA model provided forecasting accuracy of 87% and reduced errors by 25% compared to standalone models. Isolation Forest and One-Class SVM achieved anomaly detection precision of 93% and recall of 88%. The framework reduced unplanned downtime by 54% and maintenance costs by 32% across tested scenarios. This study contributes to the existing body of knowledge by presenting a robust hybrid modeling approach that integrates statistical and deep learning methods to address fault prediction and maintenance scheduling limitations. Practical implications include improved maintenance efficiency, extended equipment lifespan, and enhanced industry decision-making capabilities, making the framework highly relevant for Industry 4.0 applications.
Author Alshahrani, Najim
Author_xml – sequence: 1
  givenname: Najim
  surname: Alshahrani
  fullname: Alshahrani, Najim
  email: shahrani.najim@gmail.com
  organization: Saudi Aramco Engineering Services,Inspection Department,Dhahran,Saudi Arabia
BookMark eNo1kMtKxDAUQKMoOI79A8H8QGtuHr3Ncig6FmYcF7MfYnqjkTEtaRX8ewV1deAszuJcsrM0JGLsBkQFIOxt27WPtRLGVlJIXYFoNCqFJ6ywaBulwAgja33KFlKjLNEYc8GKaXoTQkANpkG5YLut868xEd-QyymmF74axzz8SJp4GDJ_ytRHP8dP4lsX00zJJU88Jt6l_mOac3RHvhspuzkOabpi58EdJyr-uGT7-7t9-1BuduuuXW3KaGEu0Wt0iAZt8I3S6EkacI5qagIo4cOzQ6mpN4E8CQCyoKxUKHuqexVILdn1bzYS0WHM8d3lr8P_AvUNbXFTbg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CICN63059.2024.10847337
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
Computer Science
EISBN 9798331505264
EISSN 2472-7555
EndPage 372
ExternalDocumentID 10847337
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i91t-7c47a77579fc8347ce251aae6e8f130cfba724ed5fece011e91392372de6d3fe3
IEDL.DBID RIE
IngestDate Wed Feb 12 06:22:46 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-7c47a77579fc8347ce251aae6e8f130cfba724ed5fece011e91392372de6d3fe3
PageCount 8
ParticipantIDs ieee_primary_10847337
PublicationCentury 2000
PublicationDate 2024-Dec.-22
PublicationDateYYYYMMDD 2024-12-22
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-22
  day: 22
PublicationDecade 2020
PublicationTitle Proceedings (International Confernce on Computational Intelligence and Communication Networks)
PublicationTitleAbbrev CICN
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001615872
Score 1.9026753
Snippet Predictive maintenance (PdM) has emerged as a transformative approach for enhancing industrial efficiency and reliability, leveraging machine learning (ML)...
SourceID ieee
SourceType Publisher
StartPage 365
SubjectTerms Accuracy
Anomaly detection
ARIMA
CNN
Costs
Forestry
Industries
Long short term memory
LSTM
Maintenance
Predictive maintenance
Predictive models
Support vector machines
SVM
Title Machine Learning Approaches for Predictive Maintenance in Industrial Operations
URI https://ieeexplore.ieee.org/document/10847337
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH64HcTTdE78TQ5eW9s0bdqjDMcUtnmYsNtI0lcZQjdcd_Gv9yVtHQqC0EMppIS8l_ceyfe-D-COq4AbGQvPhEXgCTK6l1FZ7_Es0JKeJHeoysk0Gb-K50W8aJrVXS8MIjrwGfr21d3l52uzs0dltMMplkaR7ECH_Kxu1tofqFBuTiVvMFxhkN0Pn4bThPzZ9qNw4bejf-iouDQy6sG0nUCNHnn3d5X2zecvbsZ_z_AYBvuOPfbynYtO4ADLPvRayQbW7OA-HFopTqvvdgqzicNRImsoVt_YQ8MvjltGpSz9z17i2HDIJsrSSlhuDmSrku31Pthsg7UPbQcwHz3Oh2OvkVfwVllYedIIqaSMZVaYNBLSIJU6SmGCaUGJzRRaSS4wjws0SFEALYEojyTPMcmjAqMz6JbrEs-BxYqKnFzJNBdC6DjUUaYDgQktRExBRF_AwC7VclMTaCzbVbr84_sVHFmLWdQI59fQrT52eEO5v9K3zuZfb6-tXg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46QT1N58Tf5uC1tUuTpj3KcGy6dh4m7DaS9FWG0A3XXfzrfekPh4Ig9FAKKeG95L1H8r3vI-SOKY8ZKbhjepnncHS6E2FZ77DI0xKfIC1RlXESDF_500zM6mb1shcGAErwGbj2tbzLT5dmY4_KcIdjLPV9uUv2MPFzUbVrbY9UMDuHktUorp4X3fdH_STAFW07Uhh3m_E_lFTKRDJok6SZQoUfeXc3hXbN5y92xn_P8Yh0tz179OU7Gx2THcg7pN2INtB6D3fIvhXjtApvJ2QSl0hKoDXJ6ht9qBnGYU2xmMX_2WscGxBprCyxhGXnALrI6Vbxg05WUK2idZdMB4_T_tCpBRacRdQrHGm4VFIKGWUm9Lk0gMWOUhBAmGFqM5lWknFIRQYGMA6ApRBlvmQpBKmfgX9KWvkyhzNChcIyJ1UyTDnnWvS0H2mPQ4CGEBhG9DnpWlPNVxWFxryx0sUf32_JwXAaj-fjUfJ8SQ6t9yyGhLEr0io-NnCNlUChb0r_fwGyF7Cr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Confernce+on+Computational+Intelligence+and+Communication+Networks%29&rft.atitle=Machine+Learning+Approaches+for+Predictive+Maintenance+in+Industrial+Operations&rft.au=Alshahrani%2C+Najim&rft.date=2024-12-22&rft.pub=IEEE&rft.eissn=2472-7555&rft.spage=365&rft.epage=372&rft_id=info:doi/10.1109%2FCICN63059.2024.10847337&rft.externalDocID=10847337