Machine Learning Approaches for Predictive Maintenance in Industrial Operations
Predictive maintenance (PdM) has emerged as a transformative approach for enhancing industrial efficiency and reliability, leveraging machine learning (ML) techniques for real-time data analysis and anomaly detection. This study proposes a hybrid PdM framework integrating advanced ML models, includi...
Saved in:
Published in | Proceedings (International Confernce on Computational Intelligence and Communication Networks) pp. 365 - 372 |
---|---|
Main Author | |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
22.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2472-7555 |
DOI | 10.1109/CICN63059.2024.10847337 |
Cover
Abstract | Predictive maintenance (PdM) has emerged as a transformative approach for enhancing industrial efficiency and reliability, leveraging machine learning (ML) techniques for real-time data analysis and anomaly detection. This study proposes a hybrid PdM framework integrating advanced ML models, including Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, Autoregressive Integrated Moving Average (ARIMA), Isolation Forest, and One-Class SVM. Using IoT-enabled sensor data capturing parameters like vibration, temperature, and pressure, the framework demonstrates significant improvements. Key findings reveal that CNNs achieved 92% accuracy in early anomaly detection, while the combined LSTM-ARIMA model provided forecasting accuracy of 87% and reduced errors by 25% compared to standalone models. Isolation Forest and One-Class SVM achieved anomaly detection precision of 93% and recall of 88%. The framework reduced unplanned downtime by 54% and maintenance costs by 32% across tested scenarios. This study contributes to the existing body of knowledge by presenting a robust hybrid modeling approach that integrates statistical and deep learning methods to address fault prediction and maintenance scheduling limitations. Practical implications include improved maintenance efficiency, extended equipment lifespan, and enhanced industry decision-making capabilities, making the framework highly relevant for Industry 4.0 applications. |
---|---|
AbstractList | Predictive maintenance (PdM) has emerged as a transformative approach for enhancing industrial efficiency and reliability, leveraging machine learning (ML) techniques for real-time data analysis and anomaly detection. This study proposes a hybrid PdM framework integrating advanced ML models, including Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, Autoregressive Integrated Moving Average (ARIMA), Isolation Forest, and One-Class SVM. Using IoT-enabled sensor data capturing parameters like vibration, temperature, and pressure, the framework demonstrates significant improvements. Key findings reveal that CNNs achieved 92% accuracy in early anomaly detection, while the combined LSTM-ARIMA model provided forecasting accuracy of 87% and reduced errors by 25% compared to standalone models. Isolation Forest and One-Class SVM achieved anomaly detection precision of 93% and recall of 88%. The framework reduced unplanned downtime by 54% and maintenance costs by 32% across tested scenarios. This study contributes to the existing body of knowledge by presenting a robust hybrid modeling approach that integrates statistical and deep learning methods to address fault prediction and maintenance scheduling limitations. Practical implications include improved maintenance efficiency, extended equipment lifespan, and enhanced industry decision-making capabilities, making the framework highly relevant for Industry 4.0 applications. |
Author | Alshahrani, Najim |
Author_xml | – sequence: 1 givenname: Najim surname: Alshahrani fullname: Alshahrani, Najim email: shahrani.najim@gmail.com organization: Saudi Aramco Engineering Services,Inspection Department,Dhahran,Saudi Arabia |
BookMark | eNo1kMtKxDAUQKMoOI79A8H8QGtuHr3Ncig6FmYcF7MfYnqjkTEtaRX8ewV1deAszuJcsrM0JGLsBkQFIOxt27WPtRLGVlJIXYFoNCqFJ6ywaBulwAgja33KFlKjLNEYc8GKaXoTQkANpkG5YLut868xEd-QyymmF74axzz8SJp4GDJ_ytRHP8dP4lsX00zJJU88Jt6l_mOac3RHvhspuzkOabpi58EdJyr-uGT7-7t9-1BuduuuXW3KaGEu0Wt0iAZt8I3S6EkacI5qagIo4cOzQ6mpN4E8CQCyoKxUKHuqexVILdn1bzYS0WHM8d3lr8P_AvUNbXFTbg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CICN63059.2024.10847337 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry Computer Science |
EISBN | 9798331505264 |
EISSN | 2472-7555 |
EndPage | 372 |
ExternalDocumentID | 10847337 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i91t-7c47a77579fc8347ce251aae6e8f130cfba724ed5fece011e91392372de6d3fe3 |
IEDL.DBID | RIE |
IngestDate | Wed Feb 12 06:22:46 EST 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-7c47a77579fc8347ce251aae6e8f130cfba724ed5fece011e91392372de6d3fe3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_10847337 |
PublicationCentury | 2000 |
PublicationDate | 2024-Dec.-22 |
PublicationDateYYYYMMDD | 2024-12-22 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-Dec.-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings (International Confernce on Computational Intelligence and Communication Networks) |
PublicationTitleAbbrev | CICN |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001615872 |
Score | 1.9026753 |
Snippet | Predictive maintenance (PdM) has emerged as a transformative approach for enhancing industrial efficiency and reliability, leveraging machine learning (ML)... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 365 |
SubjectTerms | Accuracy Anomaly detection ARIMA CNN Costs Forestry Industries Long short term memory LSTM Maintenance Predictive maintenance Predictive models Support vector machines SVM |
Title | Machine Learning Approaches for Predictive Maintenance in Industrial Operations |
URI | https://ieeexplore.ieee.org/document/10847337 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH64HcTTdE78TQ5eW9s0bdqjDMcUtnmYsNtI0lcZQjdcd_Gv9yVtHQqC0EMppIS8l_ceyfe-D-COq4AbGQvPhEXgCTK6l1FZ7_Es0JKeJHeoysk0Gb-K50W8aJrVXS8MIjrwGfr21d3l52uzs0dltMMplkaR7ECH_Kxu1tofqFBuTiVvMFxhkN0Pn4bThPzZ9qNw4bejf-iouDQy6sG0nUCNHnn3d5X2zecvbsZ_z_AYBvuOPfbynYtO4ADLPvRayQbW7OA-HFopTqvvdgqzicNRImsoVt_YQ8MvjltGpSz9z17i2HDIJsrSSlhuDmSrku31Pthsg7UPbQcwHz3Oh2OvkVfwVllYedIIqaSMZVaYNBLSIJU6SmGCaUGJzRRaSS4wjws0SFEALYEojyTPMcmjAqMz6JbrEs-BxYqKnFzJNBdC6DjUUaYDgQktRExBRF_AwC7VclMTaCzbVbr84_sVHFmLWdQI59fQrT52eEO5v9K3zuZfb6-tXg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46QT1N58Tf5uC1tUuTpj3KcGy6dh4m7DaS9FWG0A3XXfzrfekPh4Ig9FAKKeG95L1H8r3vI-SOKY8ZKbhjepnncHS6E2FZ77DI0xKfIC1RlXESDF_500zM6mb1shcGAErwGbj2tbzLT5dmY4_KcIdjLPV9uUv2MPFzUbVrbY9UMDuHktUorp4X3fdH_STAFW07Uhh3m_E_lFTKRDJok6SZQoUfeXc3hXbN5y92xn_P8Yh0tz179OU7Gx2THcg7pN2INtB6D3fIvhXjtApvJ2QSl0hKoDXJ6ht9qBnGYU2xmMX_2WscGxBprCyxhGXnALrI6Vbxg05WUK2idZdMB4_T_tCpBRacRdQrHGm4VFIKGWUm9Lk0gMWOUhBAmGFqM5lWknFIRQYGMA6ApRBlvmQpBKmfgX9KWvkyhzNChcIyJ1UyTDnnWvS0H2mPQ4CGEBhG9DnpWlPNVxWFxryx0sUf32_JwXAaj-fjUfJ8SQ6t9yyGhLEr0io-NnCNlUChb0r_fwGyF7Cr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Confernce+on+Computational+Intelligence+and+Communication+Networks%29&rft.atitle=Machine+Learning+Approaches+for+Predictive+Maintenance+in+Industrial+Operations&rft.au=Alshahrani%2C+Najim&rft.date=2024-12-22&rft.pub=IEEE&rft.eissn=2472-7555&rft.spage=365&rft.epage=372&rft_id=info:doi/10.1109%2FCICN63059.2024.10847337&rft.externalDocID=10847337 |