Electroencephalograph-Based Hand Movement Pattern Recognition for Prosthetic Robot Control Using a Combination of Long Short-Term Memory and Stacked Autoencoder Methods
Electroencephalograph (EEG) signals have expanded beyond the medical field into control systems. Improving EEG-based control technology is crucial to enhancing the quality of life for people with disabilities, especially in optimizing prosthetic functions. This research proposes a method to control...
Saved in:
Published in | 2024 IEEE International Conference on Smart Mechatronics (ICSMech) pp. 225 - 229 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
19.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalograph (EEG) signals have expanded beyond the medical field into control systems. Improving EEG-based control technology is crucial to enhancing the quality of life for people with disabilities, especially in optimizing prosthetic functions. This research proposes a method to control a prosthetic hand robot using a combination of Long Short-Term Memory (LSTM) and Stacked Autoencoder (SAE) architecture based on EEG signals. Offline tests were conducted by adjusting various parameters on LSTM and SAE, achieving an average accuracy of 99.89% in single-subject training, indicating strong potential in functional hand motion pattern recognition. However, in cross-subject testing-where the model was tested on subjects other than those used in training-the performance significantly declined, with an average accuracy of 33.97%. |
---|---|
AbstractList | Electroencephalograph (EEG) signals have expanded beyond the medical field into control systems. Improving EEG-based control technology is crucial to enhancing the quality of life for people with disabilities, especially in optimizing prosthetic functions. This research proposes a method to control a prosthetic hand robot using a combination of Long Short-Term Memory (LSTM) and Stacked Autoencoder (SAE) architecture based on EEG signals. Offline tests were conducted by adjusting various parameters on LSTM and SAE, achieving an average accuracy of 99.89% in single-subject training, indicating strong potential in functional hand motion pattern recognition. However, in cross-subject testing-where the model was tested on subjects other than those used in training-the performance significantly declined, with an average accuracy of 33.97%. |
Author | Hana Sasono, Muchamad Arif Akbar, Afgan Satrio Anam, Khairul Nanda Imron, Arizal Mujibtamala Fatoni, Moch. Rijal |
Author_xml | – sequence: 1 givenname: Muchamad Arif surname: Hana Sasono fullname: Hana Sasono, Muchamad Arif email: arifhana04@gmail.com organization: University of Jember,Department of Electrical Engineering,Jember,Indonesia – sequence: 2 givenname: Afgan Satrio surname: Akbar fullname: Akbar, Afgan Satrio email: afganstrr@gmail.com organization: University of Jember,Department of Electrical Engineering,Jember,Indonesia – sequence: 3 givenname: Moch. Rijal surname: Fatoni fullname: Fatoni, Moch. Rijal email: rijalfatooni@gmail.com organization: University of Jember,Department of Electrical Engineering,Jember,Indonesia – sequence: 4 givenname: Arizal Mujibtamala surname: Nanda Imron fullname: Nanda Imron, Arizal Mujibtamala email: arizal.tamala@unej.ac.id organization: University of Jember,Department of Electrical Engineering,Jember,Indonesia – sequence: 5 givenname: Khairul surname: Anam fullname: Anam, Khairul email: khairul@unej.ac.id organization: University of Jember,Department of Electrical Engineering,Jember,Indonesia |
BookMark | eNo1UMtOwzAQNBIcoPQPOFjcU-w4D_tYokIrtaJqy7lynE1jkXgrxyD1j_qZpDxOOzujndndO3Lt0AEhj5xNOGfqaVFsV2CaLFYim8QsTiacSR4LIa7IWOVKipSJTCoub8l51oIJHsEZODa6xYPXxyZ61j1UdK5dRVf4BR24QNc6BPCObsDgwdlg0dEaPV177EMDwRq6wRIDLdANji197607UD30XWmd_hnAmi5xYLcN-hDtwHd0BR36E71kbYM2H0Pw9DNcNsIK_CCHBqv-ntzUuu1h_FdHZPcy2xXzaPn2uiimy8gqHqJc1VlSclVCxfMyT8rhamDAWA0yjQcEWaKUSLkQJuOyipUBzaVIJJNpmYEYkYdfWwsA-6O3nfan_f__xDeSN28h |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICSMech62936.2024.10812333 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350368918 |
EndPage | 229 |
ExternalDocumentID | 10812333 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i91t-79f64b19bed17b74b233e0e00fe852e0ee649935133c618d29cea18348085b6e3 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 08 06:10:42 EST 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-79f64b19bed17b74b233e0e00fe852e0ee649935133c618d29cea18348085b6e3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10812333 |
PublicationCentury | 2000 |
PublicationDate | 2024-Nov.-19 |
PublicationDateYYYYMMDD | 2024-11-19 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov.-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE International Conference on Smart Mechatronics (ICSMech) |
PublicationTitleAbbrev | ICSMECH |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8927349 |
Snippet | Electroencephalograph (EEG) signals have expanded beyond the medical field into control systems. Improving EEG-based control technology is crucial to enhancing... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 225 |
SubjectTerms | Accuracy Autoencoders electroencephalograph Electroencephalography hand movement pattern recognition Hands Long short term memory Pattern recognition Reliability Robot control robotic prosthetic hand stacked autoencoder Testing Training |
Title | Electroencephalograph-Based Hand Movement Pattern Recognition for Prosthetic Robot Control Using a Combination of Long Short-Term Memory and Stacked Autoencoder Methods |
URI | https://ieeexplore.ieee.org/document/10812333 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl5T-7vNUcfGFDvGNmG30aQvTMRmuPagf5F_pi9ppygI3tKENmmS5n1Jv_c9Qq4iJUUhZcAQrOYM8b9igqcRi2KlErSx4Fkh7Wwcjx7D-0W0aJ3VrS8MAFjyGTgmaf_lF1rW5qgMv3A0R0EQdEgHd26Ns1YrJOq5_PquP8tArmK0YIZ84IfO9oYfoVOs5RjukfG2zoYw8uzUlXDk-y85xn83ap_0vp306OTL_ByQHSgPycegCWtjStervBWkZrdoqwo6ysuCZtoqhFd0YpU1SzrdUoh0SRHBmmduEBXihKJTLXRF-w2bnVp2Ac3x-gW303ZEqVb0QWPubIUwns1xmaeZ4e6-UVMXIllcJAp6U1emRSbsGhabkNWbHpkPB_P-iLXBGNgT9yqWcBWHwuMCCi8RSSjwlcEF11WQRj6mIMa9U2CixcjYSwufS8hxuQhTxHQihuCIdEtdwjGhAXBfRQVApNxQyTAXsZ8jkATph5Hk6oT0TC8v143cxnLbwad_5J-RXTPYxkHQ4-ekW73WcIFIoRKXdoZ8AklRwzQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCY6D3pS44y_5eCV2l9046jLzKbrsmwz2W0p9JEZY7u49qB_kX-mD9ppNDHxRiEtFCjvg37ve4Rcca1kqlTAEKwmDPG_ZlK0OeOR1i20seBZIe14GPUew_sZn9XO6tYXBgAs-Qwck7T_8tNcleaoDL9wNEdBEGySLTT83K_ctWopUc8V1_3OJAa1iNCGGfqBHzrrW34ET7G2426XDNe1VpSRZ6cspKPefwky_rtZe6T57aZHR18GaJ9sQHZAPrpVYBtTulwktSQ1u0VrldJekqU0zq1GeEFHVlszo-M1iSjPKGJY88wV4kKcUnScy7ygnYrPTi2_gCZ4_YIbajumNNd0kGPuZIFAnk1xoaexYe--UVMXYllcJlJ6UxamRSbwGhaboNWrJpnedaedHqvDMbAn4RWsJXQUSk9ISL2WbIUSXxlccF0Nbe5jCiLcPQUmXoyKvHbqCwUJLhhhG1GdjCA4JI0sz-CI0ACEr3kKwLUbahUmMvIThJKg_JAroY9J0_TyfFkJbszXHXzyR_4l2e5N48F80B8-nJIdM_DGXdATZ6RRvJZwjrihkBd2tnwCnrbGfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Smart+Mechatronics+%28ICSMech%29&rft.atitle=Electroencephalograph-Based+Hand+Movement+Pattern+Recognition+for+Prosthetic+Robot+Control+Using+a+Combination+of+Long+Short-Term+Memory+and+Stacked+Autoencoder+Methods&rft.au=Hana+Sasono%2C+Muchamad+Arif&rft.au=Akbar%2C+Afgan+Satrio&rft.au=Fatoni%2C+Moch.+Rijal&rft.au=Nanda+Imron%2C+Arizal+Mujibtamala&rft.date=2024-11-19&rft.pub=IEEE&rft.spage=225&rft.epage=229&rft_id=info:doi/10.1109%2FICSMech62936.2024.10812333&rft.externalDocID=10812333 |