A multi-frame network model based on time-frequency analysis for epilepsy prediction

In this paper, a multi-frame network model based on time-frequency analysis is proposed for epilepsy prediction, which is used to electroencephalogram (EEG) data classification. Firstly, short-term Fourier transform and wavelet packet transform is used to extract time-frequency information respectiv...

Full description

Saved in:
Bibliographic Details
Published inChinese Control Conference pp. 8262 - 8267
Main Authors Zhang, Feng, Wei, Xile, Lu, Liangfu
Format Conference Proceeding
LanguageEnglish
Published Technical Committee on Control Theory, Chinese Association of Automation 28.07.2024
Subjects
Online AccessGet full text
ISSN1934-1768
DOI10.23919/CCC63176.2024.10662334

Cover

Loading…
Abstract In this paper, a multi-frame network model based on time-frequency analysis is proposed for epilepsy prediction, which is used to electroencephalogram (EEG) data classification. Firstly, short-term Fourier transform and wavelet packet transform is used to extract time-frequency information respectively, which can obtain two data representations. Secondly, convolutional neural network and long and short-term memory network are constructed to extract high-level features from above two data representations. An innovative module named MFB++ is then used for feature fusion. Finally, the fused feature is input into classifier to obtain classification result. The experimental results show that the proposed model achieves sensitivity of 98.25% and 94.79%, and false prediction alarm rate of 0.07/h and 0.00/h on CHB-MIT and TJU-HH datasets, respectively. Moreover, the significance test shows that our model performs significantly better than unspecific random predictor for all subjects. The proposed model achieves expected prediction performance, which has important practical significance for improving the quality of life of epilepsy patients.
AbstractList In this paper, a multi-frame network model based on time-frequency analysis is proposed for epilepsy prediction, which is used to electroencephalogram (EEG) data classification. Firstly, short-term Fourier transform and wavelet packet transform is used to extract time-frequency information respectively, which can obtain two data representations. Secondly, convolutional neural network and long and short-term memory network are constructed to extract high-level features from above two data representations. An innovative module named MFB++ is then used for feature fusion. Finally, the fused feature is input into classifier to obtain classification result. The experimental results show that the proposed model achieves sensitivity of 98.25% and 94.79%, and false prediction alarm rate of 0.07/h and 0.00/h on CHB-MIT and TJU-HH datasets, respectively. Moreover, the significance test shows that our model performs significantly better than unspecific random predictor for all subjects. The proposed model achieves expected prediction performance, which has important practical significance for improving the quality of life of epilepsy patients.
Author Lu, Liangfu
Wei, Xile
Zhang, Feng
Author_xml – sequence: 1
  givenname: Feng
  surname: Zhang
  fullname: Zhang, Feng
  organization: Tianjin University,School of Electrical and Information Engineering,Tianjin,P. R. China,300072
– sequence: 2
  givenname: Xile
  surname: Wei
  fullname: Wei, Xile
  organization: Tianjin University,School of Electrical and Information Engineering,Tianjin,P. R. China,300072
– sequence: 3
  givenname: Liangfu
  surname: Lu
  fullname: Lu, Liangfu
  email: liangfulv@tju.edu.cn
  organization: Tianjin University,Academy of Medical Engineering and Translational Medicine,Tianjin,P. R. China,300072
BookMark eNo1kMtKxDAUQKMoOB39A8H8QGtuk6bJcii-YMDN7Ic8biDaprXpIP17B9TV2RzO4hTkKo0JCXkAVtVcg37suk5yaGVVs1pUwKSsORcXpNBKtY2CRjWXZAOai_JsqRtS5PzBmGQa-IYcdnQ49Ussw2wGpAmX73H-pMPosafWZPR0THSJA54N_Dphcis1yfRrjpmGcaY4xR6nvNJpRh_dEsd0S66D6TPe_XFLDs9Ph-613L-_vHW7fRk1LGUrtQOrXGgc88IAd2glGN0GXRsrBROikaHl1jkuLShjFXgRdOsVF1JqviX3v9mIiMdpjoOZ1-P_Af4D3oZTog
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/CCC63176.2024.10662334
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9887581585
9789887581581
EISSN 1934-1768
EndPage 8267
ExternalDocumentID 10662334
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i91t-769c1b8cf5c0d4a13ceb61a97f92ab6404456f73bcc36b18ab81d4f97d8346693
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:25 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-769c1b8cf5c0d4a13ceb61a97f92ab6404456f73bcc36b18ab81d4f97d8346693
PageCount 6
ParticipantIDs ieee_primary_10662334
PublicationCentury 2000
PublicationDate 2024-July-28
PublicationDateYYYYMMDD 2024-07-28
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-28
  day: 28
PublicationDecade 2020
PublicationTitle Chinese Control Conference
PublicationTitleAbbrev CCC
PublicationYear 2024
Publisher Technical Committee on Control Theory, Chinese Association of Automation
Publisher_xml – name: Technical Committee on Control Theory, Chinese Association of Automation
SSID ssj0060913
Score 2.2637718
Snippet In this paper, a multi-frame network model based on time-frequency analysis is proposed for epilepsy prediction, which is used to electroencephalogram (EEG)...
SourceID ieee
SourceType Publisher
StartPage 8262
SubjectTerms Analytical models
Brain modeling
deep learning
EEG
Epilepsy
epilepsy prediction
feature fusion
Fourier transforms
Predictive models
seizure
Sensitivity
Time-frequency analysis
Title A multi-frame network model based on time-frequency analysis for epilepsy prediction
URI https://ieeexplore.ieee.org/document/10662334
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEBVNTu2lW0p3dOjVbmwpsnUspiEUGnpIIbfg0QKl4JjUOaRf3xk57gaF3ozQYjS23kh684axGysyKGFoI8hyE0lIRAS5oDAuo01pQWtLG8XHqZo8y4f5aL4NVg-xMM65QD5zMT2Gu3y7NGs6KsM_XCFaC9ljPfzO2mCtbtlVJHDZErhSoRN9WxSFQnAkGkIq467pjyQqAUPG-2zajd5SR17jdQOxef8lzPjv1ztgg69wPf70CUSHbMdVR2zvm9LgMZvd8UAdjDyRsXjVkr95yIPDCcksX1acEs1jjZZdveHlVrCEo2PLXY3rR_224fWK7nbIngM2G9_Pikm0TagQveikiTKlTQK58SMztLJMhHGgklJnXqclKDmU6E35TIAxQkGSl4DOrPQ6s7mQSmlxwvrVsnKnjIOwzo8s1nOKNPuwM-mxNXaJGyqrz9iA5mdRt5IZi25qzv8ov2C7ZCY6NE3zS9ZvVmt3hWjfwHWw8geC7qrx
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCFVxFvPLAmNLXjxCOKQAXaiiFI3aqc7UgIKY1KOpRfzzlpeElIbJHlR-ST_Z3t774DuDI8wgx7xsMo1p7AgHsYcxfGpZXODCpl3EFxNJaDZ_EwCSerYPU6FsZaW5PPrO8-67d8M9MLd1VGK1wSWnOxDhsE_CJswrXajVc6icuGwtXnKlDXSZJIgkdHROgLv238I41KjSJ3OzBux2_II6_-okJfv_-SZvz3D-5C9ytgjz19QtEerNliH7a_aQ0eQHrDavKglzs6Fisa-jerM-Ewh2WGzQrmUs1TjYZfvWTZSrKEkWvLbEk7SPm2ZOXcve44i3YhvbtNk4G3Sqngvaig8iKpdICxzkPdMyILuLYog0xFuepnKEVPkD-VRxy15hKDOENyZ0WuIhNzIaXih9ApZoU9Aobc2Dw0VM9Kp9pHnYmcWlOXdKQy6hi6bn6mZSOaMW2n5uSP8kvYHKSj4XR4P348hS1nMneF2o_PoFPNF_acsL_Ci9riH6Uyrj4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=A+multi-frame+network+model+based+on+time-frequency+analysis+for+epilepsy+prediction&rft.au=Zhang%2C+Feng&rft.au=Wei%2C+Xile&rft.au=Lu%2C+Liangfu&rft.date=2024-07-28&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=8262&rft.epage=8267&rft_id=info:doi/10.23919%2FCCC63176.2024.10662334&rft.externalDocID=10662334