A multi-frame network model based on time-frequency analysis for epilepsy prediction
In this paper, a multi-frame network model based on time-frequency analysis is proposed for epilepsy prediction, which is used to electroencephalogram (EEG) data classification. Firstly, short-term Fourier transform and wavelet packet transform is used to extract time-frequency information respectiv...
Saved in:
Published in | Chinese Control Conference pp. 8262 - 8267 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
Technical Committee on Control Theory, Chinese Association of Automation
28.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1934-1768 |
DOI | 10.23919/CCC63176.2024.10662334 |
Cover
Loading…
Abstract | In this paper, a multi-frame network model based on time-frequency analysis is proposed for epilepsy prediction, which is used to electroencephalogram (EEG) data classification. Firstly, short-term Fourier transform and wavelet packet transform is used to extract time-frequency information respectively, which can obtain two data representations. Secondly, convolutional neural network and long and short-term memory network are constructed to extract high-level features from above two data representations. An innovative module named MFB++ is then used for feature fusion. Finally, the fused feature is input into classifier to obtain classification result. The experimental results show that the proposed model achieves sensitivity of 98.25% and 94.79%, and false prediction alarm rate of 0.07/h and 0.00/h on CHB-MIT and TJU-HH datasets, respectively. Moreover, the significance test shows that our model performs significantly better than unspecific random predictor for all subjects. The proposed model achieves expected prediction performance, which has important practical significance for improving the quality of life of epilepsy patients. |
---|---|
AbstractList | In this paper, a multi-frame network model based on time-frequency analysis is proposed for epilepsy prediction, which is used to electroencephalogram (EEG) data classification. Firstly, short-term Fourier transform and wavelet packet transform is used to extract time-frequency information respectively, which can obtain two data representations. Secondly, convolutional neural network and long and short-term memory network are constructed to extract high-level features from above two data representations. An innovative module named MFB++ is then used for feature fusion. Finally, the fused feature is input into classifier to obtain classification result. The experimental results show that the proposed model achieves sensitivity of 98.25% and 94.79%, and false prediction alarm rate of 0.07/h and 0.00/h on CHB-MIT and TJU-HH datasets, respectively. Moreover, the significance test shows that our model performs significantly better than unspecific random predictor for all subjects. The proposed model achieves expected prediction performance, which has important practical significance for improving the quality of life of epilepsy patients. |
Author | Lu, Liangfu Wei, Xile Zhang, Feng |
Author_xml | – sequence: 1 givenname: Feng surname: Zhang fullname: Zhang, Feng organization: Tianjin University,School of Electrical and Information Engineering,Tianjin,P. R. China,300072 – sequence: 2 givenname: Xile surname: Wei fullname: Wei, Xile organization: Tianjin University,School of Electrical and Information Engineering,Tianjin,P. R. China,300072 – sequence: 3 givenname: Liangfu surname: Lu fullname: Lu, Liangfu email: liangfulv@tju.edu.cn organization: Tianjin University,Academy of Medical Engineering and Translational Medicine,Tianjin,P. R. China,300072 |
BookMark | eNo1kMtKxDAUQKMoOB39A8H8QGtuk6bJcii-YMDN7Ic8biDaprXpIP17B9TV2RzO4hTkKo0JCXkAVtVcg37suk5yaGVVs1pUwKSsORcXpNBKtY2CRjWXZAOai_JsqRtS5PzBmGQa-IYcdnQ49Ussw2wGpAmX73H-pMPosafWZPR0THSJA54N_Dphcis1yfRrjpmGcaY4xR6nvNJpRh_dEsd0S66D6TPe_XFLDs9Ph-613L-_vHW7fRk1LGUrtQOrXGgc88IAd2glGN0GXRsrBROikaHl1jkuLShjFXgRdOsVF1JqviX3v9mIiMdpjoOZ1-P_Af4D3oZTog |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.23919/CCC63176.2024.10662334 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9887581585 9789887581581 |
EISSN | 1934-1768 |
EndPage | 8267 |
ExternalDocumentID | 10662334 |
Genre | orig-research |
GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i91t-769c1b8cf5c0d4a13ceb61a97f92ab6404456f73bcc36b18ab81d4f97d8346693 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:00:25 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-769c1b8cf5c0d4a13ceb61a97f92ab6404456f73bcc36b18ab81d4f97d8346693 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10662334 |
PublicationCentury | 2000 |
PublicationDate | 2024-July-28 |
PublicationDateYYYYMMDD | 2024-07-28 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Chinese Control Conference |
PublicationTitleAbbrev | CCC |
PublicationYear | 2024 |
Publisher | Technical Committee on Control Theory, Chinese Association of Automation |
Publisher_xml | – name: Technical Committee on Control Theory, Chinese Association of Automation |
SSID | ssj0060913 |
Score | 2.2637718 |
Snippet | In this paper, a multi-frame network model based on time-frequency analysis is proposed for epilepsy prediction, which is used to electroencephalogram (EEG)... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 8262 |
SubjectTerms | Analytical models Brain modeling deep learning EEG Epilepsy epilepsy prediction feature fusion Fourier transforms Predictive models seizure Sensitivity Time-frequency analysis |
Title | A multi-frame network model based on time-frequency analysis for epilepsy prediction |
URI | https://ieeexplore.ieee.org/document/10662334 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEBVNTu2lW0p3dOjVbmwpsnUspiEUGnpIIbfg0QKl4JjUOaRf3xk57gaF3ozQYjS23kh684axGysyKGFoI8hyE0lIRAS5oDAuo01pQWtLG8XHqZo8y4f5aL4NVg-xMM65QD5zMT2Gu3y7NGs6KsM_XCFaC9ljPfzO2mCtbtlVJHDZErhSoRN9WxSFQnAkGkIq467pjyQqAUPG-2zajd5SR17jdQOxef8lzPjv1ztgg69wPf70CUSHbMdVR2zvm9LgMZvd8UAdjDyRsXjVkr95yIPDCcksX1acEs1jjZZdveHlVrCEo2PLXY3rR_224fWK7nbIngM2G9_Pikm0TagQveikiTKlTQK58SMztLJMhHGgklJnXqclKDmU6E35TIAxQkGSl4DOrPQ6s7mQSmlxwvrVsnKnjIOwzo8s1nOKNPuwM-mxNXaJGyqrz9iA5mdRt5IZi25qzv8ov2C7ZCY6NE3zS9ZvVmt3hWjfwHWw8geC7qrx |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCFVxFvPLAmNLXjxCOKQAXaiiFI3aqc7UgIKY1KOpRfzzlpeElIbJHlR-ST_Z3t774DuDI8wgx7xsMo1p7AgHsYcxfGpZXODCpl3EFxNJaDZ_EwCSerYPU6FsZaW5PPrO8-67d8M9MLd1VGK1wSWnOxDhsE_CJswrXajVc6icuGwtXnKlDXSZJIgkdHROgLv238I41KjSJ3OzBux2_II6_-okJfv_-SZvz3D-5C9ytgjz19QtEerNliH7a_aQ0eQHrDavKglzs6Fisa-jerM-Ewh2WGzQrmUs1TjYZfvWTZSrKEkWvLbEk7SPm2ZOXcve44i3YhvbtNk4G3Sqngvaig8iKpdICxzkPdMyILuLYog0xFuepnKEVPkD-VRxy15hKDOENyZ0WuIhNzIaXih9ApZoU9Aobc2Dw0VM9Kp9pHnYmcWlOXdKQy6hi6bn6mZSOaMW2n5uSP8kvYHKSj4XR4P348hS1nMneF2o_PoFPNF_acsL_Ci9riH6Uyrj4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=A+multi-frame+network+model+based+on+time-frequency+analysis+for+epilepsy+prediction&rft.au=Zhang%2C+Feng&rft.au=Wei%2C+Xile&rft.au=Lu%2C+Liangfu&rft.date=2024-07-28&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=8262&rft.epage=8267&rft_id=info:doi/10.23919%2FCCC63176.2024.10662334&rft.externalDocID=10662334 |