Regression Analysis using Machine Learning Algorithms to Predict CO2 Emissions
Precise measurement of fuel consumption and emissions plays an important role in evaluating the environmental effects of materials and stringent emission control methods, especially within the transportation sector. This sector represents a substantial contributor to both global greenhouse gas emiss...
Saved in:
Published in | 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom) pp. 444 - 448 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
Bharati Vidyapeeth, New Delhi
28.02.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.23919/INDIACom61295.2024.10499094 |
Cover
Abstract | Precise measurement of fuel consumption and emissions plays an important role in evaluating the environmental effects of materials and stringent emission control methods, especially within the transportation sector. This sector represents a substantial contributor to both global greenhouse gas emissions and the release of hazardous pollutants, making accurate assessment imperative for addressing climate change. The primary objective is to construct accurate predictive models that estimate CO 2 emissions based on vehicle attributes, fostering a deeper understanding of the environmental impact of vehicular activities. Leveraging the "CO 2 Emissions_Canada.csv" dataset, the paper embarks on an extensive journey of data preprocessing, exploratory data analysis, and model training. These algorithms are meticulously fine-tuned and evaluated through metrics such as R-squared and mean absolute percentage error, rendering insights into their predictive accuracies. In essence, this paper pioneers a pathway towards environmentally responsible mobility solutions, capitalizing on the fusion of data science and environmental conservation. |
---|---|
AbstractList | Precise measurement of fuel consumption and emissions plays an important role in evaluating the environmental effects of materials and stringent emission control methods, especially within the transportation sector. This sector represents a substantial contributor to both global greenhouse gas emissions and the release of hazardous pollutants, making accurate assessment imperative for addressing climate change. The primary objective is to construct accurate predictive models that estimate CO 2 emissions based on vehicle attributes, fostering a deeper understanding of the environmental impact of vehicular activities. Leveraging the "CO 2 Emissions_Canada.csv" dataset, the paper embarks on an extensive journey of data preprocessing, exploratory data analysis, and model training. These algorithms are meticulously fine-tuned and evaluated through metrics such as R-squared and mean absolute percentage error, rendering insights into their predictive accuracies. In essence, this paper pioneers a pathway towards environmentally responsible mobility solutions, capitalizing on the fusion of data science and environmental conservation. |
Author | Sambandam, Rakoth Kandan Joshy, Lida Anna Vetriveeran, Divya Jenefa, J. |
Author_xml | – sequence: 1 givenname: Lida Anna surname: Joshy fullname: Joshy, Lida Anna organization: CHRIST (Deemed to be University) Kengeri Campus,Dept. of CSE,Bengaluru – sequence: 2 givenname: Rakoth Kandan surname: Sambandam fullname: Sambandam, Rakoth Kandan email: rakothsen@gmail.com organization: CHRIST (Deemed to be University) Kengeri Campus,Dept. of CSE,Bengaluru – sequence: 3 givenname: Divya surname: Vetriveeran fullname: Vetriveeran, Divya organization: CHRIST (Deemed to be University) Kengeri Campus,Dept. of CSE,Bengaluru – sequence: 4 givenname: J. surname: Jenefa fullname: Jenefa, J. organization: CHRIST (Deemed to be University) Kengeri Campus,Dept. of CSE,Bengaluru |
BookMark | eNo1j71OwzAYRY0EA5S-AYMH1gT_xfE3RqFApNAi1L2Kky-ppcRBdhj69pS_6R7d4ejeG3LpZ4-E3HOWCgkcHqrtY1WU86S5gCwVTKiUMwXAQF2QNeQGpGGZUhmHa7J9xyFgjG72tPDNeIou0s_o_EBfm_boPNIam-C_i2Ic5uCW4xTpMtO3gJ1rF1ruBN1M7kcRb8lV34wR13-5Ivunzb58Serdc1UWdeKAL4lGbeV5F7OAlnf6DAx03plMirxHYXpk2lhlLbAW2z5H2XFpW6MEy7kyckXufrUOEQ8fwU1NOB3-X8ovh4xOLg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.23919/INDIACom61295.2024.10499094 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings Accès UTTOP - IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9789380544519 9380544510 |
EndPage | 448 |
ExternalDocumentID | 10499094 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i91t-6e6b30240b9eb1d640b0967d85327fe28fe068b4bb90cecf7e3d13bc842071483 |
IEDL.DBID | RIE |
IngestDate | Wed May 01 11:49:10 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-6e6b30240b9eb1d640b0967d85327fe28fe068b4bb90cecf7e3d13bc842071483 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10499094 |
PublicationCentury | 2000 |
PublicationDate | 2024-Feb.-28 |
PublicationDateYYYYMMDD | 2024-02-28 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-Feb.-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom) |
PublicationTitleAbbrev | INDIACom |
PublicationYear | 2024 |
Publisher | Bharati Vidyapeeth, New Delhi |
Publisher_xml | – name: Bharati Vidyapeeth, New Delhi |
Score | 1.8787129 |
Snippet | Precise measurement of fuel consumption and emissions plays an important role in evaluating the environmental effects of materials and stringent emission... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 444 |
SubjectTerms | Analytical models CO Data models Data preprocessing Emission Control k-NN Machine Learning Machine learning algorithms Prediction algorithms Predictive models Random Forest Training |
Title | Regression Analysis using Machine Learning Algorithms to Predict CO2 Emissions |
URI | https://ieeexplore.ieee.org/document/10499094 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66g3hSceJvcti1tUt_JccxNzZhVWTCbmNJXutQW9myi3-9L-mqKAjeQiFpea_pl9f3fe8R0rHHcKbDyMtVzL1IRrbNC8RemkNik76pljajO8mS0VN0N4tnW7G608IAgCOfgW-HLpevK7Wxv8pwh-P5HOORXbKL71kt1tojHUdnFl1xM85uxz3cR4jaIsbYj0V-M-VH8xSHHcMDkjV3rSkjL_7GSF99_CrI-O_HOiTtb5keffgCoCOyA-UxyR6hqLmtJW0qjlDLbi_oxBEngW5rqha091pUq6V5fltTU-FSNmljaP-e0QG63y6xbpPpcDDtj7xt0wRvKbrGSyCRoa1bJgV-hXWCAwxSUo2ozND-jOcQJFxGUopAgcpTCHU3lIpHzEqZeHhCWmVVwimhkuVBuMjTgIFAqEtxUr6whUSV1gvg_Iy0rS3m73VZjHljhvM_rl-QfeuSWg9-SVpmtYErRHQjr50nPwEw86HA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB20gnpSseK3e-g1Md1svo6ltrTaRpEKvZVudhKLmkibXPz1ziaNoiB4WwK7CTvZvJ3Me28BWnobzpUtjDhyfENIoY95QcfwYnR10ddTUld0x6E7eBK3U2e6FquXWhhELMlnaOpmWctXWVToX2W0wml_TvnIJmwR8AunkmttQ6skNAft4HoY3gw7tJIItwOHsj8uzLrTj-NTSvTo70FY37cijbyYRS7N6OOXJeO_H2wfmt9CPfbwBUEHsIHpIYSPmFTs1pTVniNM89sTNi6pk8jWrqoJ67wm2XKRP7-tWJ7RULpsk7PuPWc9egH0EKsmTPq9SXdgrI9NMBZBOzdcdKWtnctkQN9h5VKD0hRPES5zigD3Y7RcXwopAyvCKPbQVm1bRr7gWszk20fQSLMUj4FJHlv2PPYsjgGBnUed4rm2Eo2UmqPvn0BTz8XsvTLGmNXTcPrH9SvYGUzGo9loGN6dwa4OT6UOP4dGvizwgvA9l5dlVD8B2J6lDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+11th+International+Conference+on+Computing+for+Sustainable+Global+Development+%28INDIACom%29&rft.atitle=Regression+Analysis+using+Machine+Learning+Algorithms+to+Predict+CO2+Emissions&rft.au=Joshy%2C+Lida+Anna&rft.au=Sambandam%2C+Rakoth+Kandan&rft.au=Vetriveeran%2C+Divya&rft.au=Jenefa%2C+J.&rft.date=2024-02-28&rft.pub=Bharati+Vidyapeeth%2C+New+Delhi&rft.spage=444&rft.epage=448&rft_id=info:doi/10.23919%2FINDIACom61295.2024.10499094&rft.externalDocID=10499094 |