Regression Analysis using Machine Learning Algorithms to Predict CO2 Emissions

Precise measurement of fuel consumption and emissions plays an important role in evaluating the environmental effects of materials and stringent emission control methods, especially within the transportation sector. This sector represents a substantial contributor to both global greenhouse gas emiss...

Full description

Saved in:
Bibliographic Details
Published in2024 11th International Conference on Computing for Sustainable Global Development (INDIACom) pp. 444 - 448
Main Authors Joshy, Lida Anna, Sambandam, Rakoth Kandan, Vetriveeran, Divya, Jenefa, J.
Format Conference Proceeding
LanguageEnglish
Published Bharati Vidyapeeth, New Delhi 28.02.2024
Subjects
Online AccessGet full text
DOI10.23919/INDIACom61295.2024.10499094

Cover

Abstract Precise measurement of fuel consumption and emissions plays an important role in evaluating the environmental effects of materials and stringent emission control methods, especially within the transportation sector. This sector represents a substantial contributor to both global greenhouse gas emissions and the release of hazardous pollutants, making accurate assessment imperative for addressing climate change. The primary objective is to construct accurate predictive models that estimate CO 2 emissions based on vehicle attributes, fostering a deeper understanding of the environmental impact of vehicular activities. Leveraging the "CO 2 Emissions_Canada.csv" dataset, the paper embarks on an extensive journey of data preprocessing, exploratory data analysis, and model training. These algorithms are meticulously fine-tuned and evaluated through metrics such as R-squared and mean absolute percentage error, rendering insights into their predictive accuracies. In essence, this paper pioneers a pathway towards environmentally responsible mobility solutions, capitalizing on the fusion of data science and environmental conservation.
AbstractList Precise measurement of fuel consumption and emissions plays an important role in evaluating the environmental effects of materials and stringent emission control methods, especially within the transportation sector. This sector represents a substantial contributor to both global greenhouse gas emissions and the release of hazardous pollutants, making accurate assessment imperative for addressing climate change. The primary objective is to construct accurate predictive models that estimate CO 2 emissions based on vehicle attributes, fostering a deeper understanding of the environmental impact of vehicular activities. Leveraging the "CO 2 Emissions_Canada.csv" dataset, the paper embarks on an extensive journey of data preprocessing, exploratory data analysis, and model training. These algorithms are meticulously fine-tuned and evaluated through metrics such as R-squared and mean absolute percentage error, rendering insights into their predictive accuracies. In essence, this paper pioneers a pathway towards environmentally responsible mobility solutions, capitalizing on the fusion of data science and environmental conservation.
Author Sambandam, Rakoth Kandan
Joshy, Lida Anna
Vetriveeran, Divya
Jenefa, J.
Author_xml – sequence: 1
  givenname: Lida Anna
  surname: Joshy
  fullname: Joshy, Lida Anna
  organization: CHRIST (Deemed to be University) Kengeri Campus,Dept. of CSE,Bengaluru
– sequence: 2
  givenname: Rakoth Kandan
  surname: Sambandam
  fullname: Sambandam, Rakoth Kandan
  email: rakothsen@gmail.com
  organization: CHRIST (Deemed to be University) Kengeri Campus,Dept. of CSE,Bengaluru
– sequence: 3
  givenname: Divya
  surname: Vetriveeran
  fullname: Vetriveeran, Divya
  organization: CHRIST (Deemed to be University) Kengeri Campus,Dept. of CSE,Bengaluru
– sequence: 4
  givenname: J.
  surname: Jenefa
  fullname: Jenefa, J.
  organization: CHRIST (Deemed to be University) Kengeri Campus,Dept. of CSE,Bengaluru
BookMark eNo1j71OwzAYRY0EA5S-AYMH1gT_xfE3RqFApNAi1L2Kky-ppcRBdhj69pS_6R7d4ejeG3LpZ4-E3HOWCgkcHqrtY1WU86S5gCwVTKiUMwXAQF2QNeQGpGGZUhmHa7J9xyFgjG72tPDNeIou0s_o_EBfm_boPNIam-C_i2Ic5uCW4xTpMtO3gJ1rF1ruBN1M7kcRb8lV34wR13-5Ivunzb58Serdc1UWdeKAL4lGbeV5F7OAlnf6DAx03plMirxHYXpk2lhlLbAW2z5H2XFpW6MEy7kyckXufrUOEQ8fwU1NOB3-X8ovh4xOLg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/INDIACom61295.2024.10499094
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès UTTOP - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9789380544519
9380544510
EndPage 448
ExternalDocumentID 10499094
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-6e6b30240b9eb1d640b0967d85327fe28fe068b4bb90cecf7e3d13bc842071483
IEDL.DBID RIE
IngestDate Wed May 01 11:49:10 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-6e6b30240b9eb1d640b0967d85327fe28fe068b4bb90cecf7e3d13bc842071483
PageCount 5
ParticipantIDs ieee_primary_10499094
PublicationCentury 2000
PublicationDate 2024-Feb.-28
PublicationDateYYYYMMDD 2024-02-28
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb.-28
  day: 28
PublicationDecade 2020
PublicationTitle 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom)
PublicationTitleAbbrev INDIACom
PublicationYear 2024
Publisher Bharati Vidyapeeth, New Delhi
Publisher_xml – name: Bharati Vidyapeeth, New Delhi
Score 1.8787129
Snippet Precise measurement of fuel consumption and emissions plays an important role in evaluating the environmental effects of materials and stringent emission...
SourceID ieee
SourceType Publisher
StartPage 444
SubjectTerms Analytical models
CO
Data models
Data preprocessing
Emission Control
k-NN
Machine Learning
Machine learning algorithms
Prediction algorithms
Predictive models
Random Forest
Training
Title Regression Analysis using Machine Learning Algorithms to Predict CO2 Emissions
URI https://ieeexplore.ieee.org/document/10499094
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66g3hSceJvcti1tUt_JccxNzZhVWTCbmNJXutQW9myi3-9L-mqKAjeQiFpea_pl9f3fe8R0rHHcKbDyMtVzL1IRrbNC8RemkNik76pljajO8mS0VN0N4tnW7G608IAgCOfgW-HLpevK7Wxv8pwh-P5HOORXbKL71kt1tojHUdnFl1xM85uxz3cR4jaIsbYj0V-M-VH8xSHHcMDkjV3rSkjL_7GSF99_CrI-O_HOiTtb5keffgCoCOyA-UxyR6hqLmtJW0qjlDLbi_oxBEngW5rqha091pUq6V5fltTU-FSNmljaP-e0QG63y6xbpPpcDDtj7xt0wRvKbrGSyCRoa1bJgV-hXWCAwxSUo2ozND-jOcQJFxGUopAgcpTCHU3lIpHzEqZeHhCWmVVwimhkuVBuMjTgIFAqEtxUr6whUSV1gvg_Iy0rS3m73VZjHljhvM_rl-QfeuSWg9-SVpmtYErRHQjr50nPwEw86HA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB20gnpSseK3e-g1Md1svo6ltrTaRpEKvZVudhKLmkibXPz1ziaNoiB4WwK7CTvZvJ3Me28BWnobzpUtjDhyfENIoY95QcfwYnR10ddTUld0x6E7eBK3U2e6FquXWhhELMlnaOpmWctXWVToX2W0wml_TvnIJmwR8AunkmttQ6skNAft4HoY3gw7tJIItwOHsj8uzLrTj-NTSvTo70FY37cijbyYRS7N6OOXJeO_H2wfmt9CPfbwBUEHsIHpIYSPmFTs1pTVniNM89sTNi6pk8jWrqoJ67wm2XKRP7-tWJ7RULpsk7PuPWc9egH0EKsmTPq9SXdgrI9NMBZBOzdcdKWtnctkQN9h5VKD0hRPES5zigD3Y7RcXwopAyvCKPbQVm1bRr7gWszk20fQSLMUj4FJHlv2PPYsjgGBnUed4rm2Eo2UmqPvn0BTz8XsvTLGmNXTcPrH9SvYGUzGo9loGN6dwa4OT6UOP4dGvizwgvA9l5dlVD8B2J6lDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+11th+International+Conference+on+Computing+for+Sustainable+Global+Development+%28INDIACom%29&rft.atitle=Regression+Analysis+using+Machine+Learning+Algorithms+to+Predict+CO2+Emissions&rft.au=Joshy%2C+Lida+Anna&rft.au=Sambandam%2C+Rakoth+Kandan&rft.au=Vetriveeran%2C+Divya&rft.au=Jenefa%2C+J.&rft.date=2024-02-28&rft.pub=Bharati+Vidyapeeth%2C+New+Delhi&rft.spage=444&rft.epage=448&rft_id=info:doi/10.23919%2FINDIACom61295.2024.10499094&rft.externalDocID=10499094