Exponential Auto-Tuning Fault-Tolerant Control of N Degrees-of-Freedom Manipulators Subject to Torque Constraints

Faulty joints in a robot manipulator adversely affect the tracking control performance and compromise the system's stability; therefore, it is necessary to design a control system capable of compensating for the effects of actuator faults to maintain control efficacy. To this end, this paper pr...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the IEEE Conference on Decision & Control pp. 7263 - 7270
Main Authors Shahna, Mehdi Heydari, Mattila, Jouni
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.12.2024
Subjects
Online AccessGet full text
ISSN2576-2370
DOI10.1109/CDC56724.2024.10885963

Cover

Loading…
Abstract Faulty joints in a robot manipulator adversely affect the tracking control performance and compromise the system's stability; therefore, it is necessary to design a control system capable of compensating for the effects of actuator faults to maintain control efficacy. To this end, this paper presents new amendments to the dynamical formulation of robot manipulators to account for latent actuator faults and over-generated torques mathematically. Subsequently, a novel auto-tuning subsystem-based fault-tolerant control (SBFC) mechanism is designed to force joints' states closely along desired trajectories, while tolerating actuator faults, excessive torques, and unknown modeling errors. Suboptimal SBFC gains are determined by employing the JAYA algorithm (JA), a high-performance swarm intelligence technique, standing out for its capacity to continuously approach optimal control levels without requiring meticulous tuning of algorithm-specific parameters, relying instead on its intrinsic principles. Notably, this control framework ensures uniform exponential stability (UES). The enhancement of accuracy and tracking time for reference trajectories, along with the validation of theoretical assertions, is demonstrated through simulation outcomes.
AbstractList Faulty joints in a robot manipulator adversely affect the tracking control performance and compromise the system's stability; therefore, it is necessary to design a control system capable of compensating for the effects of actuator faults to maintain control efficacy. To this end, this paper presents new amendments to the dynamical formulation of robot manipulators to account for latent actuator faults and over-generated torques mathematically. Subsequently, a novel auto-tuning subsystem-based fault-tolerant control (SBFC) mechanism is designed to force joints' states closely along desired trajectories, while tolerating actuator faults, excessive torques, and unknown modeling errors. Suboptimal SBFC gains are determined by employing the JAYA algorithm (JA), a high-performance swarm intelligence technique, standing out for its capacity to continuously approach optimal control levels without requiring meticulous tuning of algorithm-specific parameters, relying instead on its intrinsic principles. Notably, this control framework ensures uniform exponential stability (UES). The enhancement of accuracy and tracking time for reference trajectories, along with the validation of theoretical assertions, is demonstrated through simulation outcomes.
Author Mattila, Jouni
Shahna, Mehdi Heydari
Author_xml – sequence: 1
  givenname: Mehdi Heydari
  surname: Shahna
  fullname: Shahna, Mehdi Heydari
  email: mehdi.heydarishahna@tuni.fi
  organization: Tampere University,Faculty of Engineering and Natural Sciences,Finland
– sequence: 2
  givenname: Jouni
  surname: Mattila
  fullname: Mattila, Jouni
  email: jouni.mattila@tuni.fi
  organization: Tampere University,Faculty of Engineering and Natural Sciences,Finland
BookMark eNo1kMFOAyEYhNFooq19A2N4ASrw78JybLatmlQ9uPeGXdiGZgstsIm-vTXqZWYu33eYCbrywVuEHhidM0bVY72sSyF5Mef0HIxWVakEXKCZkqqCkgITAOoS3fJSCsJB0hs0SWlPKShVwC06rT6PZ6XPTg94MeZAmtE7v8NrPQ6ZNGGwUfuM6-BzDAMOPX7DS7uL1iYSerI-DxMO-FV7dxwHnUNM-GNs97bLOAfchHga7Q-ectTO53SHrns9JDv76ylq1qumfiab96eXerEhTrFMCsOF4lLKtuu4KIXRlkFFO8mBKiOMZYb2VppC9gJakLJsW1MVTIhWdMIATNH9r9ZZa7fH6A46fm3_H4JvnaNeSQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CDC56724.2024.10885963
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350316339
EISSN 2576-2370
EndPage 7270
ExternalDocumentID 10885963
Genre orig-research
GrantInformation_xml – fundername: Business Finland
  funderid: 10.13039/501100014438
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i91t-4d2692777bcc2656dae1380c72309d6de1d0fe7d47f63b3775bbd84166b6c6d33
IEDL.DBID RIE
IngestDate Wed Aug 27 01:48:44 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-4d2692777bcc2656dae1380c72309d6de1d0fe7d47f63b3775bbd84166b6c6d33
PageCount 8
ParticipantIDs ieee_primary_10885963
PublicationCentury 2000
PublicationDate 2024-Dec.-16
PublicationDateYYYYMMDD 2024-12-16
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-16
  day: 16
PublicationDecade 2020
PublicationTitle Proceedings of the IEEE Conference on Decision & Control
PublicationTitleAbbrev CDC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039943
Score 1.9030404
Snippet Faulty joints in a robot manipulator adversely affect the tracking control performance and compromise the system's stability; therefore, it is necessary to...
SourceID ieee
SourceType Publisher
StartPage 7263
SubjectTerms Actuators
Fault tolerance
Fault tolerant systems
Manipulator dynamics
Mathematical models
Optimal control
Particle swarm optimization
Torque
Trajectory
Tuning
Title Exponential Auto-Tuning Fault-Tolerant Control of N Degrees-of-Freedom Manipulators Subject to Torque Constraints
URI https://ieeexplore.ieee.org/document/10885963
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na8MgFJe1p-2yr45942FXu-ZDTY4jbSiDlR0y6K0YNVDWxa4xMPbX75k0-4LBLkECmuhTf77n-72H0A33qIi9QhAO0iVh5Gsi4GBCJBWacxaHso32OWPTp_B-TudbsnrDhdFaN85neuiKzV2-MrJ2pjJY4VFEoc0e6oHm1pK1um0XgDYMthRgbxTfJuOEMu47swk8upo_cqg0EJLuo1n38dZz5HlY23wo33_FZfz33x2gwRdbDz9-4tAh2tHlEdr7FmjwGL1O3tamdI5BYoXvamtIVjuDCE5FvbIkMysNmGVx0jquY1PgGR5r0MV1RUxBUigo84IfRLlsEn6ZTYVhz3FGHGwNzswG8MVVr5qcE7YaoCydZMmUbJMtkGXsWRIqn8U-5zyXIB3KlNBeEI0kBxUlVkxpT40KzVXICxbkAec0z5W7smQ5k0wFwQnql9CRU4SFiw8UhpJzCdqbogLAUdGg0Iz60Dw7QwM3eIt1G05j0Y3b-R_vL9Cuk6HzIfHYJerbTa2v4CRg8-tmBnwArzOzuQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDMDCq4g3HlhdmsSPZkSlVYG2YghSt8qxHamixKV1JMSv55y0vCQklsiKZCf22f585_vuELoSAZNxkEkiQLqEtkJDJBxMiGLSCMFjqqpon0Pee6L3IzZaktVLLowxpnQ-Mw1fLO_ytVWFN5XBCm-1GLS5jjYA-Glc0bVWGy9ALY2WJOCgGV-3b9uMi9AbTuCxqvsji0oJIt0dNFx9vvIdeW4ULm2o91-RGf_9f7uo_sXXw4-fSLSH1ky-j7a_hRo8QK-dt5nNvWuQnOKbwlmSFN4kgruymDqS2KkB1HK4XbmuY5vhIb41oI2bBbEZ6UJB2xc8kPmkTPll5wsMu44342BncWLngDC--qLMOuEWdZR0O0m7R5bpFsgkDhyhOuRxKIRIFciHcS1NELWaSoCSEmuuTaCbmRGaioxHaSQES1PtLy15yhXXUXSIajl05Ahh6SMEUaqEUKC_aSYBHjWLMsNZCM3zY1T3gzeeVQE1xqtxO_nj_SXa7CWD_rh_N3w4RVtent6jJOBnqObmhTmHc4FLL8rZ8AFKW7cJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+Conference+on+Decision+%26+Control&rft.atitle=Exponential+Auto-Tuning+Fault-Tolerant+Control+of+N+Degrees-of-Freedom+Manipulators+Subject+to+Torque+Constraints&rft.au=Shahna%2C+Mehdi+Heydari&rft.au=Mattila%2C+Jouni&rft.date=2024-12-16&rft.pub=IEEE&rft.eissn=2576-2370&rft.spage=7263&rft.epage=7270&rft_id=info:doi/10.1109%2FCDC56724.2024.10885963&rft.externalDocID=10885963