Automatic Modulation Recognition of Communication Signal Based on Deconvolution Generation Adversarial Network

To solve the problem of low signal recognition accuracy and insufficient network training under the few-shot condition, this paper proposes a generative adversarial network modulation recognition algorithm based on deconvolution feature reconstruction, which uses a small number of labeled samples to...

Full description

Saved in:
Bibliographic Details
Published in2024 2nd International Conference on Signal Processing and Intelligent Computing (SPIC) pp. 16 - 20
Main Authors Wang, Zhengyu, Zhou, Fan, Han, Xiao, Zhang, Lan
Format Conference Proceeding
LanguageEnglish
Published IEEE 20.09.2024
Subjects
Online AccessGet full text
DOI10.1109/SPIC62469.2024.10691420

Cover

Loading…
Abstract To solve the problem of low signal recognition accuracy and insufficient network training under the few-shot condition, this paper proposes a generative adversarial network modulation recognition algorithm based on deconvolution feature reconstruction, which uses a small number of labeled samples to generate signal fake samples satisfying convolutional neural networks. The simulation results show that under the few-shot condition, the average recognition accuracy of the proposed algorithm can be improved by 9.3% compared with the traditional convolutional neural network algorithm when the SNR ranges from -6 to 6dB. Compared with the traditional generative adversarial network algorithm, the average recognition accuracy can be improved by 2.13%, effectively realizing the signal modulation recognition under the few-shot condition.
AbstractList To solve the problem of low signal recognition accuracy and insufficient network training under the few-shot condition, this paper proposes a generative adversarial network modulation recognition algorithm based on deconvolution feature reconstruction, which uses a small number of labeled samples to generate signal fake samples satisfying convolutional neural networks. The simulation results show that under the few-shot condition, the average recognition accuracy of the proposed algorithm can be improved by 9.3% compared with the traditional convolutional neural network algorithm when the SNR ranges from -6 to 6dB. Compared with the traditional generative adversarial network algorithm, the average recognition accuracy can be improved by 2.13%, effectively realizing the signal modulation recognition under the few-shot condition.
Author Han, Xiao
Wang, Zhengyu
Zhou, Fan
Zhang, Lan
Author_xml – sequence: 1
  givenname: Zhengyu
  surname: Wang
  fullname: Wang, Zhengyu
  organization: Shenyang Ligong University,School of Information Science and Engineering,Shenyang,China
– sequence: 2
  givenname: Fan
  surname: Zhou
  fullname: Zhou, Fan
  email: zhoufan@sylu.edu.cn
  organization: Shenyang Ligong University,School of Information Science and Engineering,Shenyang,China
– sequence: 3
  givenname: Xiao
  surname: Han
  fullname: Han, Xiao
  organization: Shenyang Ligong University,School of Information Science and Engineering,Shenyang,China
– sequence: 4
  givenname: Lan
  surname: Zhang
  fullname: Zhang, Lan
  organization: North China Institute of Aerospace Engineering,School of Remote Sensing and Information Engineering,Langfan,China
BookMark eNo1kMtOwzAQRY0ECyj9AyTyAym249jxMgQolcpDtPvK2OPKIrGRkxTx95gGZjPn6h7NYi7QqQ8eELomeEEIljeb11XDKeNyQTFlC4K5JIziEzSXQlZFiQtepTlHvh6H0KnB6ewpmLFNFHz2BjrsvTtysFkTum70Tk_lxu29arNb1YPJUr5Lsj-Edjy2S_AQJ7E2B4i9ii7ZzzB8hfhxic6sanuY_-0Z2j7cb5vHfP2yXDX1OneSDDnDRoHWVCieSEtcSaqUKYQuMRHSwK9ghdWcWAa2UuxdawylEVgLWpXFDF1NZx0A7D6j61T83v1_ofgBBn1a0Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SPIC62469.2024.10691420
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350368888
EndPage 20
ExternalDocumentID 10691420
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-40daecc27a60dac90892aad37c50179de40daf7fc61f4ef8a4bcc0e5d70c72853
IEDL.DBID RIE
IngestDate Wed Oct 09 06:12:57 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-40daecc27a60dac90892aad37c50179de40daf7fc61f4ef8a4bcc0e5d70c72853
PageCount 5
ParticipantIDs ieee_primary_10691420
PublicationCentury 2000
PublicationDate 2024-Sept.-20
PublicationDateYYYYMMDD 2024-09-20
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-20
  day: 20
PublicationDecade 2020
PublicationTitle 2024 2nd International Conference on Signal Processing and Intelligent Computing (SPIC)
PublicationTitleAbbrev SPIC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8859143
Snippet To solve the problem of low signal recognition accuracy and insufficient network training under the few-shot condition, this paper proposes a generative...
SourceID ieee
SourceType Publisher
StartPage 16
SubjectTerms Accuracy
automatic modulation recognition
Convolutional neural networks
Deconvolution
Deep learning
few-shot learning
generative adversarial network
Generative adversarial networks
Modulation
Signal processing algorithms
Signal to noise ratio
Simulation
Training
Title Automatic Modulation Recognition of Communication Signal Based on Deconvolution Generation Adversarial Network
URI https://ieeexplore.ieee.org/document/10691420
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kycVK_4mB6-tTZom7VGnYwobw03YbeRXZQitaOvBv96XtFUmCB4KryXQkpf0y5d87z2ELmVmNKyUZchT4CYsZybMEpWH3ACawpVx5bYGJlM-fmIPy3TZBav7WBhrrRef2ciZ_izfVLpxW2Uww3lOGAWGvg3MrQ3W6jRbJM6v5rP7IafA94D2URb1rTfqpnjYGO2iaf_CVi3yEjW1ivTnr1yM__6iPRT8ROjh2Tf27KMtWx6g8rqpK5-CFU8q09Xlwo-9RAjsqsAbESF4vn6GkYRvAMsMhvtbx48_uuGI25zU3vSFm9-lG6542krHA7QY3S2G47CrpxCuc1IDUzQSHEaF5GBpd-BHpTSJ0Kmblsa6BoUoNCcFs0UmmdI6tqkRsRYUYP0QDcqqtEcI20JZxRUt4PcEK7AsSyTRRIiUWyITQY9R4Ppq9dpmzFj13XTyx_NTtONc5nQYND5Dg_qtsecA9rW68E7-AoqBrX4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA4yD3pSceJvc_Da2mZp0h51OjbdynATdhv5VRlCK9p68K_3JW2VCYKHwmsJtOQl_fIl33sPoUsRawUrZeGxCLgJTaj24p5MPKYBTeGKmbRbA5OUDZ_o_SJaNMHqLhbGGOPEZ8a3pjvL14Wq7FYZzHCWhJQAQ98E4KdJHa7VqLbCILmaTUd9RoDxAfEj1G_br1VOccAx2EFp-8paL_LiV6X01eevbIz__qZd1P2J0cPTb_TZQxsm30f5dVUWLgkrnhS6qcyFH1uRENhFhtdiQvBs9QxjCd8AmmkM97eWIX80AxLXWamd6Uo3vws7YHFai8e7aD64m_eHXlNRwVslYQlcUQtwGeGCgaXskR8RQve4iuzE1MY2yHimWJhRk8WCSqUCE2keKE4A2A9QJy9yc4iwyaSRTJIMflCwBovjnghVyHnETCh6nByhru2r5WudM2PZdtPxH88v0NZwPhkvx6P04QRtW_dZVQYJTlGnfKvMGUB_Kc-dw78AzwSwzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+2nd+International+Conference+on+Signal+Processing+and+Intelligent+Computing+%28SPIC%29&rft.atitle=Automatic+Modulation+Recognition+of+Communication+Signal+Based+on+Deconvolution+Generation+Adversarial+Network&rft.au=Wang%2C+Zhengyu&rft.au=Zhou%2C+Fan&rft.au=Han%2C+Xiao&rft.au=Zhang%2C+Lan&rft.date=2024-09-20&rft.pub=IEEE&rft.spage=16&rft.epage=20&rft_id=info:doi/10.1109%2FSPIC62469.2024.10691420&rft.externalDocID=10691420