Near-infrared Spectrum Brain Pattern Recognition Based on One-dimensional Convolutional Neural Network

Differences between individual dynamic functional networks have stable spatial distributions, and whether such differences can be used for identification has not been fully studied. In this paper based on a set of public near-infrared spectroscopy datasets, we preprocessed the data of 30 subjects, c...

Full description

Saved in:
Bibliographic Details
Published inChinese Control Conference pp. 8218 - 8223
Main Authors Yan, Xinyue, Feng, Yiyu, Zhang, Xianfu
Format Conference Proceeding
LanguageEnglish
Published Technical Committee on Control Theory, Chinese Association of Automation 28.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Differences between individual dynamic functional networks have stable spatial distributions, and whether such differences can be used for identification has not been fully studied. In this paper based on a set of public near-infrared spectroscopy datasets, we preprocessed the data of 30 subjects, constructed brain networks under different time windows, and identified them as "brainprint" features. Next, we compared the impact of traditional classification algorithms and deep learning classification algorithms on "brainprint" recognition results. For the 30 classification predictions of different feature experimental groups, the one-dimensional convolutional neural network (1DCNN) model constructed in this paper can achieve an average recognition accuracy of 98.67 \%. This shows that the CNN model constructed in this study is feasible for the classification of near-infrared "brainprint" and provides a potential biometric technology for future identity recognition.
AbstractList Differences between individual dynamic functional networks have stable spatial distributions, and whether such differences can be used for identification has not been fully studied. In this paper based on a set of public near-infrared spectroscopy datasets, we preprocessed the data of 30 subjects, constructed brain networks under different time windows, and identified them as "brainprint" features. Next, we compared the impact of traditional classification algorithms and deep learning classification algorithms on "brainprint" recognition results. For the 30 classification predictions of different feature experimental groups, the one-dimensional convolutional neural network (1DCNN) model constructed in this paper can achieve an average recognition accuracy of 98.67 \%. This shows that the CNN model constructed in this study is feasible for the classification of near-infrared "brainprint" and provides a potential biometric technology for future identity recognition.
Author Yan, Xinyue
Zhang, Xianfu
Feng, Yiyu
Author_xml – sequence: 1
  givenname: Xinyue
  surname: Yan
  fullname: Yan, Xinyue
  email: yanxinyue@mail.sdu.edu.cn
  organization: Shandong University,School of Control Science and Engineering,Jinan,P. R. China,250061
– sequence: 2
  givenname: Yiyu
  surname: Feng
  fullname: Feng, Yiyu
  organization: Shandong University,School of Control Science and Engineering,Jinan,P. R. China,250061
– sequence: 3
  givenname: Xianfu
  surname: Zhang
  fullname: Zhang, Xianfu
  organization: Shandong University,School of Control Science and Engineering,Jinan,P. R. China,250061
BookMark eNo1kMtOwzAQRQ0CiabwB0jkBxI8dh72kka8pKpF0H1lO2NkSJzKcUH8PYHC6szcezSLSciJHzwScgU0Z1yCvG6apuJQVzmjrMiBVhUDyo9IIoWoSwGlKI_JDCQvsskSZyQZxzdKKyqBz4hdoQqZ8zaogG36skMTw75PF0E5nz6pGDH49BnN8OpddINPF2qcxGlYe8xa16Mfp1h1aTP4j6Hbx8O2wn34Rfwcwvs5ObWqG_Hij3OyubvdNA_Zcn3_2NwsMychZlyDRGoko4WxWGjULRrNai00M2UJtm0BpsrWPwozRhfWIlMSRWnAWj4nl4ezDhG3u-B6Fb62_z_h3xupW6c
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/CCC63176.2024.10662103
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Libary (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Libary (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9887581585
9789887581581
EISSN 1934-1768
EndPage 8223
ExternalDocumentID 10662103
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i91t-3b19e0c9204cfe4bebdecb27b8b2c551fdd114cff792042ccb4ffe2a9e85c1ff3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:24 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-3b19e0c9204cfe4bebdecb27b8b2c551fdd114cff792042ccb4ffe2a9e85c1ff3
PageCount 6
ParticipantIDs ieee_primary_10662103
PublicationCentury 2000
PublicationDate 2024-July-28
PublicationDateYYYYMMDD 2024-07-28
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-28
  day: 28
PublicationDecade 2020
PublicationTitle Chinese Control Conference
PublicationTitleAbbrev CCC
PublicationYear 2024
Publisher Technical Committee on Control Theory, Chinese Association of Automation
Publisher_xml – name: Technical Committee on Control Theory, Chinese Association of Automation
SSID ssj0060913
Score 2.2635791
Snippet Differences between individual dynamic functional networks have stable spatial distributions, and whether such differences can be used for identification has...
SourceID ieee
SourceType Publisher
StartPage 8218
SubjectTerms Biological system modeling
Brain modeling
Classification algorithms
Convolutional neural network
Deep learning
Functional networks
Graphical models
Identity recognition
Machine learning
Pattern recognition
Predictive models
Title Near-infrared Spectrum Brain Pattern Recognition Based on One-dimensional Convolutional Neural Network
URI https://ieeexplore.ieee.org/document/10662103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ734NfGbHLy2rmmSNtcVxxCcQybsNprkBUTsZLQe_Ot9SVe_QPDUtLRNSV7zPvJ7v0fI1ZApXSoro9wJG3GpcR1MfRhOcFlqkSU25FfcTeXkkd8uxGKTrB5yYQAggM8g9s2wl29XpvGhMvzDpUQXJe2RHnpubbJWt-xKT3DZArhYqhJ1XRSFROXoYQiMx92jP4qoBB0y3iXTrvcWOvIcN7WOzfsvYsZ_f94eGXyl69HZpyLaJ1tQHZCdb0yDh8RNUaIjlKa1B5xTX3W-XjcvdOQrRNBZINms6EOHJlpVdITqzVJs3FcQWV8DoOXvoNjp20Ze8cyTe4RDQJMPyHx8My8m0abEQvSkkjpKdaJgaBQbcuOAa9AWjGaZzjUzaEs5a9FfMs5l_hZmjObOASsV5MIkzqVHpF-tKjgmVJiMmcSkKBLABRpdLgWh0BwS-A5dmhMy8CO2fG1JNJbdYJ3-cf2MbPuJ82FUlp-TPg4KXKD-r_VlmPcPnjKyMw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHIALryHe5MC1Y02btLmuAg3YyoSGtNvUJI6EEB2aOg78epx05SUhcWoatU3luLHjfv5MyEWXSVVII4LUchPEQuE6GLkwHI9FoXgSGp9fMcxF_zG-nfDJMlnd58IAgAefQcc1_b98M9MLFyrDL1wI3KJEq2QNDT8P63StZuEVjuKyhnCxSIbyMssygebRARFY3Glu_lFGxVuR6y2SN-PX4JHnzqJSHf3-i5rx3y-4TdpfCXt09GmKdsgKlLtk8xvX4B6xOep0gPo0d5Bz6urOV_PFC-25GhF05Gk2S_rQ4IlmJe2hgTMUG_clBMZVAagZPCgO-rbUWDxz9B7-4PHkbTK-vhpn_WBZZCF4kmEVRCqU0NWSdWNtIVagDGjFEpUqplHE1hjcMWlrE3cJ01rF1gIrJKRch9ZG-6RVzko4IJTrhOlQR6gUEHN0u2wEXKJDxPEZqtCHpO0kNn2taTSmjbCO_ug_J-v98XAwHdzkd8dkw02iC6qy9IS0UEBwit5Apc68DnwAFEC1fA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=Near-infrared+Spectrum+Brain+Pattern+Recognition+Based+on+One-dimensional+Convolutional+Neural+Network&rft.au=Yan%2C+Xinyue&rft.au=Feng%2C+Yiyu&rft.au=Zhang%2C+Xianfu&rft.date=2024-07-28&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=8218&rft.epage=8223&rft_id=info:doi/10.23919%2FCCC63176.2024.10662103&rft.externalDocID=10662103