Fake News Detection: A Comprehensive Methodology Utilizing Topic Modeling and Machine Learning
In this work, we present a thorough methodology that makes use of advanced machine learning algorithms and natural language processing tools to identify fake news. We used Latent Dirichlet Allocation (LDA) for topic modeling in order to identify latent topics within the articles. To depict the topic...
Saved in:
Published in | 2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE) pp. 472 - 477 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
09.05.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/IC3SE62002.2024.10593065 |
Cover
Loading…
Abstract | In this work, we present a thorough methodology that makes use of advanced machine learning algorithms and natural language processing tools to identify fake news. We used Latent Dirichlet Allocation (LDA) for topic modeling in order to identify latent topics within the articles. To depict the topics in a lower-dimensional space, dimensionality reduction techniques like T-Distributed Stochastic Neighbor embedding (t-SNE) are used. To discern between authentic and fake news stories, classification algorithms undergo training using topic representations. We assess the effectiveness of proposed method and obtain 95.64% accuracy, 1.0293 AUC, 0.9347 recall, 0.9595 precision, and 0.9466 F1-score. These outcomes demonstrate how well our methodology works to address this important problem. |
---|---|
AbstractList | In this work, we present a thorough methodology that makes use of advanced machine learning algorithms and natural language processing tools to identify fake news. We used Latent Dirichlet Allocation (LDA) for topic modeling in order to identify latent topics within the articles. To depict the topics in a lower-dimensional space, dimensionality reduction techniques like T-Distributed Stochastic Neighbor embedding (t-SNE) are used. To discern between authentic and fake news stories, classification algorithms undergo training using topic representations. We assess the effectiveness of proposed method and obtain 95.64% accuracy, 1.0293 AUC, 0.9347 recall, 0.9595 precision, and 0.9466 F1-score. These outcomes demonstrate how well our methodology works to address this important problem. |
Author | Ghai, Deepika Choudhary, Shilpa Gowroju, Swathi Kumar, B. Bikram Rakesh, Nitin Srilakshmi, R. |
Author_xml | – sequence: 1 givenname: Shilpa surname: Choudhary fullname: Choudhary, Shilpa email: shilpachoudhary2020@gmail.com organization: Neil Gogte Institute of Technology,Department of Compter Science & Engineering(AIML),Hyderabad,India – sequence: 2 givenname: Swathi surname: Gowroju fullname: Gowroju, Swathi email: swathigowroju@sreyas.ac.in organization: Sreyas Institute of Engineering and Technology,Department of Compter Science & Engineering (AI& ML),Hyderabad,India – sequence: 3 givenname: R. surname: Srilakshmi fullname: Srilakshmi, R. email: srilakshmi.pdf@gmail.com organization: CVR College of Engineering,Department of Emerging Techonologies(CSE-DS),Hyderabad,India – sequence: 4 givenname: B. Bikram surname: Kumar fullname: Kumar, B. Bikram email: basaba.bikram@kluniversity.in organization: Koneru Lakshmaiah Education Foundation,Department of Computer Science & Engineering,Vaddeswaram,India – sequence: 5 givenname: Deepika surname: Ghai fullname: Ghai, Deepika email: deepika.21507@lpu.co.in organization: Lovely Professional University,Department of Electronics & Communication Engineering,Punjab,India – sequence: 6 givenname: Nitin surname: Rakesh fullname: Rakesh, Nitin email: nitin.rakesh@gmail.com organization: Symbiosis Institute of Technology, Symbiosis International (Deemed University),Pune,India |
BookMark | eNo1j71OwzAURo0EA5S-AYNfIOH6J07MVoUWKiUwEFYqO740FqkdJRGoPD0gYPp0znCk74KchhiQEMogZQz09bYUT2vFAXjKgcuUQaYFqOyELHWuC5GBUKqQ6py8bMwb0gf8mOgtztjOPoYbuqJlPAwjdhgm_460xrmLLvZxf6TPs-_9pw972sTBt7SODvsfNMHR2rSdD0grNGP4lpfk7NX0Ey7_dkGazbop75Pq8W5brqrEazYnwgJmLWulQG4Yco4alHPWSKGsVa1D6QrnNDBtcqYdQMFypZy1ubSuMGJBrn6zHhF3w-gPZjzu_l-LL8C6UzU |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IC3SE62002.2024.10593065 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
EISBN | 9798350366846 |
EndPage | 477 |
ExternalDocumentID | 10593065 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i91t-3b0e5c1c43e2a1e22e906ddba436bb6cde4d8dd9019a719d0081766dbb74bd8a3 |
IEDL.DBID | RIE |
IngestDate | Wed Jul 31 06:02:01 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-3b0e5c1c43e2a1e22e906ddba436bb6cde4d8dd9019a719d0081766dbb74bd8a3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10593065 |
PublicationCentury | 2000 |
PublicationDate | 2024-May-9 |
PublicationDateYYYYMMDD | 2024-05-09 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-9 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | 2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE) |
PublicationTitleAbbrev | IC3SE |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8945185 |
Snippet | In this work, we present a thorough methodology that makes use of advanced machine learning algorithms and natural language processing tools to identify fake... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 472 |
SubjectTerms | Accuracy Data visualization Dimensionality reduction Fake News Detection Forestry LDA Machine Learning Machine learning algorithms PCA Random Forest Stochastic processes SVM Training |
Title | Fake News Detection: A Comprehensive Methodology Utilizing Topic Modeling and Machine Learning |
URI | https://ieeexplore.ieee.org/document/10593065 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Hkr4m_ycFru7bJssabzA0VNgQ32MmRl7xqmXRjdJf99SbpqigI3kIJaclL-t5Lvu99hNywWGACXAcsgyjgKYpA8TSzBrHLx7BMMPAo35F4mPCnaWe6Jat7LgwievAZhq7p7_LNQq_dUVnbxQJO6bxBGjZzq8haNTonku3HHnvpC4c6sHlfwsO6-w_hFO83BvtkVL-xgovMw3UJod78Ksb47086IK1vih59_nI-h2QHiyOy64Q2nXrbMXkdqDlS9wuj91h6vFVxS--o2_8rfK9g63To9aP9yTqdlPlHvrGD0fFimWvqVNIcV52qwtChx1wi3ZZjfWuR8aA_7j0EWy2FIJdxGTCIsKNjzRkmKsYkQRkJY0BxJgCENshNaowNDqTqxtK4SKErhAHocjCpYiekWSwKPCVUSwUdsIlObCNHw-yGZ0xlhkVgjQ5Mn5GWm6bZsqqWMatn6PyP5xdkz1nLgwjlJWmWqzVeWUdfwrU38CeNeKom |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46QT35a-Jvc_Da2TZp1nqTubHpNgQ32MmRl7xpmXRjdJf99SbpqigI3kIhTclr3ntJvu99hNywQGAIXHlsAr7HYxSe5PHEGMT8PppNBAOH8u2L9pA_jqLRmqzuuDCI6MBnWLNNd5evZ2ppj8pubS5glc43yZYJ_FFQ0LVKfI6f3HYa7KUpLO7A7PxCXis7_JBOcZGjtUf65ZgFYGRaW-ZQU6tf5Rj__VH7pPpN0qPPX-HngGxgdki2rdSm1W87Iq8tOUVqnRh9wNwhrrI7ek-tB1jgewFcpz2nIO3O1ukwTz_SlXkZHczmqaJWJ82y1anMNO051CXSdUHWtyoZtJqDRttbqyl4aRLkHgMfIxUozjCUAYYhJr7QGiRnAkAojVzHWpv0IJH1INE2V6gLoQHqHHQs2TGpZLMMTwhViYQIzFYnMLmjZmbJMyYnmvlgzA5MnZKqnabxvKiXMS5n6OyP59dkpz3odcfdTv_pnOxayzlIYXJBKvliiZcm7Odw5Yz9CZswrW8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Communication%2C+Computer+Sciences+and+Engineering+%28IC3SE%29&rft.atitle=Fake+News+Detection%3A+A+Comprehensive+Methodology+Utilizing+Topic+Modeling+and+Machine+Learning&rft.au=Choudhary%2C+Shilpa&rft.au=Gowroju%2C+Swathi&rft.au=Srilakshmi%2C+R.&rft.au=Kumar%2C+B.+Bikram&rft.date=2024-05-09&rft.pub=IEEE&rft.spage=472&rft.epage=477&rft_id=info:doi/10.1109%2FIC3SE62002.2024.10593065&rft.externalDocID=10593065 |