Fake News Detection: A Comprehensive Methodology Utilizing Topic Modeling and Machine Learning

In this work, we present a thorough methodology that makes use of advanced machine learning algorithms and natural language processing tools to identify fake news. We used Latent Dirichlet Allocation (LDA) for topic modeling in order to identify latent topics within the articles. To depict the topic...

Full description

Saved in:
Bibliographic Details
Published in2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE) pp. 472 - 477
Main Authors Choudhary, Shilpa, Gowroju, Swathi, Srilakshmi, R., Kumar, B. Bikram, Ghai, Deepika, Rakesh, Nitin
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.05.2024
Subjects
Online AccessGet full text
DOI10.1109/IC3SE62002.2024.10593065

Cover

Loading…
Abstract In this work, we present a thorough methodology that makes use of advanced machine learning algorithms and natural language processing tools to identify fake news. We used Latent Dirichlet Allocation (LDA) for topic modeling in order to identify latent topics within the articles. To depict the topics in a lower-dimensional space, dimensionality reduction techniques like T-Distributed Stochastic Neighbor embedding (t-SNE) are used. To discern between authentic and fake news stories, classification algorithms undergo training using topic representations. We assess the effectiveness of proposed method and obtain 95.64% accuracy, 1.0293 AUC, 0.9347 recall, 0.9595 precision, and 0.9466 F1-score. These outcomes demonstrate how well our methodology works to address this important problem.
AbstractList In this work, we present a thorough methodology that makes use of advanced machine learning algorithms and natural language processing tools to identify fake news. We used Latent Dirichlet Allocation (LDA) for topic modeling in order to identify latent topics within the articles. To depict the topics in a lower-dimensional space, dimensionality reduction techniques like T-Distributed Stochastic Neighbor embedding (t-SNE) are used. To discern between authentic and fake news stories, classification algorithms undergo training using topic representations. We assess the effectiveness of proposed method and obtain 95.64% accuracy, 1.0293 AUC, 0.9347 recall, 0.9595 precision, and 0.9466 F1-score. These outcomes demonstrate how well our methodology works to address this important problem.
Author Ghai, Deepika
Choudhary, Shilpa
Gowroju, Swathi
Kumar, B. Bikram
Rakesh, Nitin
Srilakshmi, R.
Author_xml – sequence: 1
  givenname: Shilpa
  surname: Choudhary
  fullname: Choudhary, Shilpa
  email: shilpachoudhary2020@gmail.com
  organization: Neil Gogte Institute of Technology,Department of Compter Science & Engineering(AIML),Hyderabad,India
– sequence: 2
  givenname: Swathi
  surname: Gowroju
  fullname: Gowroju, Swathi
  email: swathigowroju@sreyas.ac.in
  organization: Sreyas Institute of Engineering and Technology,Department of Compter Science & Engineering (AI& ML),Hyderabad,India
– sequence: 3
  givenname: R.
  surname: Srilakshmi
  fullname: Srilakshmi, R.
  email: srilakshmi.pdf@gmail.com
  organization: CVR College of Engineering,Department of Emerging Techonologies(CSE-DS),Hyderabad,India
– sequence: 4
  givenname: B. Bikram
  surname: Kumar
  fullname: Kumar, B. Bikram
  email: basaba.bikram@kluniversity.in
  organization: Koneru Lakshmaiah Education Foundation,Department of Computer Science & Engineering,Vaddeswaram,India
– sequence: 5
  givenname: Deepika
  surname: Ghai
  fullname: Ghai, Deepika
  email: deepika.21507@lpu.co.in
  organization: Lovely Professional University,Department of Electronics & Communication Engineering,Punjab,India
– sequence: 6
  givenname: Nitin
  surname: Rakesh
  fullname: Rakesh, Nitin
  email: nitin.rakesh@gmail.com
  organization: Symbiosis Institute of Technology, Symbiosis International (Deemed University),Pune,India
BookMark eNo1j71OwzAURo0EA5S-AYNfIOH6J07MVoUWKiUwEFYqO740FqkdJRGoPD0gYPp0znCk74KchhiQEMogZQz09bYUT2vFAXjKgcuUQaYFqOyELHWuC5GBUKqQ6py8bMwb0gf8mOgtztjOPoYbuqJlPAwjdhgm_460xrmLLvZxf6TPs-_9pw972sTBt7SODvsfNMHR2rSdD0grNGP4lpfk7NX0Ey7_dkGazbop75Pq8W5brqrEazYnwgJmLWulQG4Yco4alHPWSKGsVa1D6QrnNDBtcqYdQMFypZy1ubSuMGJBrn6zHhF3w-gPZjzu_l-LL8C6UzU
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IC3SE62002.2024.10593065
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISBN 9798350366846
EndPage 477
ExternalDocumentID 10593065
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-3b0e5c1c43e2a1e22e906ddba436bb6cde4d8dd9019a719d0081766dbb74bd8a3
IEDL.DBID RIE
IngestDate Wed Jul 31 06:02:01 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-3b0e5c1c43e2a1e22e906ddba436bb6cde4d8dd9019a719d0081766dbb74bd8a3
PageCount 6
ParticipantIDs ieee_primary_10593065
PublicationCentury 2000
PublicationDate 2024-May-9
PublicationDateYYYYMMDD 2024-05-09
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-9
  day: 09
PublicationDecade 2020
PublicationTitle 2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE)
PublicationTitleAbbrev IC3SE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8945185
Snippet In this work, we present a thorough methodology that makes use of advanced machine learning algorithms and natural language processing tools to identify fake...
SourceID ieee
SourceType Publisher
StartPage 472
SubjectTerms Accuracy
Data visualization
Dimensionality reduction
Fake News Detection
Forestry
LDA
Machine Learning
Machine learning algorithms
PCA
Random Forest
Stochastic processes
SVM
Training
Title Fake News Detection: A Comprehensive Methodology Utilizing Topic Modeling and Machine Learning
URI https://ieeexplore.ieee.org/document/10593065
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Hkr4m_ycFru7bJssabzA0VNgQ32MmRl7xqmXRjdJf99SbpqigI3kIJaclL-t5Lvu99hNywWGACXAcsgyjgKYpA8TSzBrHLx7BMMPAo35F4mPCnaWe6Jat7LgwievAZhq7p7_LNQq_dUVnbxQJO6bxBGjZzq8haNTonku3HHnvpC4c6sHlfwsO6-w_hFO83BvtkVL-xgovMw3UJod78Ksb47086IK1vih59_nI-h2QHiyOy64Q2nXrbMXkdqDlS9wuj91h6vFVxS--o2_8rfK9g63To9aP9yTqdlPlHvrGD0fFimWvqVNIcV52qwtChx1wi3ZZjfWuR8aA_7j0EWy2FIJdxGTCIsKNjzRkmKsYkQRkJY0BxJgCENshNaowNDqTqxtK4SKErhAHocjCpYiekWSwKPCVUSwUdsIlObCNHw-yGZ0xlhkVgjQ5Mn5GWm6bZsqqWMatn6PyP5xdkz1nLgwjlJWmWqzVeWUdfwrU38CeNeKom
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46QT35a-Jvc_Da2TZp1nqTubHpNgQ32MmRl7xpmXRjdJf99SbpqigI3kIhTclr3ntJvu99hNywQGAIXHlsAr7HYxSe5PHEGMT8PppNBAOH8u2L9pA_jqLRmqzuuDCI6MBnWLNNd5evZ2ppj8pubS5glc43yZYJ_FFQ0LVKfI6f3HYa7KUpLO7A7PxCXis7_JBOcZGjtUf65ZgFYGRaW-ZQU6tf5Rj__VH7pPpN0qPPX-HngGxgdki2rdSm1W87Iq8tOUVqnRh9wNwhrrI7ek-tB1jgewFcpz2nIO3O1ukwTz_SlXkZHczmqaJWJ82y1anMNO051CXSdUHWtyoZtJqDRttbqyl4aRLkHgMfIxUozjCUAYYhJr7QGiRnAkAojVzHWpv0IJH1INE2V6gLoQHqHHQs2TGpZLMMTwhViYQIzFYnMLmjZmbJMyYnmvlgzA5MnZKqnabxvKiXMS5n6OyP59dkpz3odcfdTv_pnOxayzlIYXJBKvliiZcm7Odw5Yz9CZswrW8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Communication%2C+Computer+Sciences+and+Engineering+%28IC3SE%29&rft.atitle=Fake+News+Detection%3A+A+Comprehensive+Methodology+Utilizing+Topic+Modeling+and+Machine+Learning&rft.au=Choudhary%2C+Shilpa&rft.au=Gowroju%2C+Swathi&rft.au=Srilakshmi%2C+R.&rft.au=Kumar%2C+B.+Bikram&rft.date=2024-05-09&rft.pub=IEEE&rft.spage=472&rft.epage=477&rft_id=info:doi/10.1109%2FIC3SE62002.2024.10593065&rft.externalDocID=10593065