A Model Transfer Framework for PEMFC Water Fault Diagnosis Based on Hybrid Transfer Learning Strategy
The proton exchange membrane fuel cell (PEMFC) is a "green" energy conversion device that is widely considered to be one of the best power sources for future electric vehicles and static energy systems. The task of fault diagnosis for PEMFC often faces the dilemma of data shortage, especia...
Saved in:
Published in | 2024 IEEE 25th China Conference on System Simulation Technology and its Application (CCSSTA) pp. 595 - 599 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
21.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The proton exchange membrane fuel cell (PEMFC) is a "green" energy conversion device that is widely considered to be one of the best power sources for future electric vehicles and static energy systems. The task of fault diagnosis for PEMFC often faces the dilemma of data shortage, especially in terms of internal faults of the fuel cell. To solve these problems, We proposed a method for model transfer based on hybrid transfer learning to solve the problem of insufficient data sets in the target domain. The key point of this approach is to use the TrAdaBoost algorithm for transfer learning. In order to meet the algorithm's requirements for initial diagnosis accuracy in practical applications, we combine a fine-tuning model transfer strategy with this algorithm. Compared with other methods, this method has significant improvement in water fault diagnosis accuracy. |
---|---|
AbstractList | The proton exchange membrane fuel cell (PEMFC) is a "green" energy conversion device that is widely considered to be one of the best power sources for future electric vehicles and static energy systems. The task of fault diagnosis for PEMFC often faces the dilemma of data shortage, especially in terms of internal faults of the fuel cell. To solve these problems, We proposed a method for model transfer based on hybrid transfer learning to solve the problem of insufficient data sets in the target domain. The key point of this approach is to use the TrAdaBoost algorithm for transfer learning. In order to meet the algorithm's requirements for initial diagnosis accuracy in practical applications, we combine a fine-tuning model transfer strategy with this algorithm. Compared with other methods, this method has significant improvement in water fault diagnosis accuracy. |
Author | Chen, Zonghai Gao, Shangrui Li, Mince Sun, Zhendong |
Author_xml | – sequence: 1 givenname: Shangrui surname: Gao fullname: Gao, Shangrui email: gsr2399348615@mail.ustc.edu.cn organization: University of Science and Technology of China,Department of Automation,Hefei,China – sequence: 2 givenname: Zhendong surname: Sun fullname: Sun, Zhendong email: szd1996@ustc.edu.cn organization: University of Science and Technology of China,Department of Automation,Hefei,China – sequence: 3 givenname: Mince surname: Li fullname: Li, Mince email: limince@mail.ustc.edu.cn organization: University of Science and Technology of China,Department of Automation,Hefei,China – sequence: 4 givenname: Zonghai surname: Chen fullname: Chen, Zonghai email: chenzh@ustc.edu.cn organization: University of Science and Technology of China,Department of Automation,Hefei,China |
BookMark | eNpFj9FKwzAYRiPohc69gRfxAVb_JE3aXM66bsKGwgpejqT5U4JbKmlF-vYqKl59F4dz4Lsi57GPSMgtg4wx0HdVtd83S8VBq4wDzzMGSrNSlmdkrgtdCglCKQVwSXBJd73DI22SiYPHROtkTvjRp1fq-0SfV7u6oi9m_Cbm_TjSh2C62A9hoPdmQEf7SDeTTcH9J7ZoUgyxo_sxfZnddE0uvDkOOP_dGWnqVVNtFtun9WO13C6CZuOCl1K4ovReFErnVigHztsCwNoWHUeAAloQwMsWPfI2t7mX1jPpc65kLsWM3PxkAyIe3lI4mTQd_s6LTwsZVNo |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CCSSTA62096.2024.10691858 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350366600 |
EndPage | 599 |
ExternalDocumentID | 10691858 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i91t-2853d78ff37694b36d0dfb700bbced2e0070c03028cefe2c4b4f5bf15f4265453 |
IEDL.DBID | RIE |
IngestDate | Wed Oct 09 06:12:58 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-2853d78ff37694b36d0dfb700bbced2e0070c03028cefe2c4b4f5bf15f4265453 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10691858 |
PublicationCentury | 2000 |
PublicationDate | 2024-July-21 |
PublicationDateYYYYMMDD | 2024-07-21 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-21 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE 25th China Conference on System Simulation Technology and its Application (CCSSTA) |
PublicationTitleAbbrev | CCSSTA |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.879879 |
Snippet | The proton exchange membrane fuel cell (PEMFC) is a "green" energy conversion device that is widely considered to be one of the best power sources for future... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 595 |
SubjectTerms | Accuracy Data models Faces Fault diagnosis Feature extraction Fuel cells model transfer Protons Systems simulation Transfer learning Water resources |
Title | A Model Transfer Framework for PEMFC Water Fault Diagnosis Based on Hybrid Transfer Learning Strategy |
URI | https://ieeexplore.ieee.org/document/10691858 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Gk4sTfRPDa2mZplh1nXRnCxmATdxt9aSJD6UTbw_zrfUlbh4LgraQhLQnp9730fd8j5EYA0nCmQq8XCY4BCk89CAPwDMNQzHRlGrpyb-OJGD3yh0W0qMXqTgujtXbJZ9q3l-5ffrZWpT0qwx0u-ogvskVaGLlVYq1dcl37Zt7G8Ww2HwiGrBwDP8b9pv-PyikOOJJ9MmkeWeWLvPhlAb76_OXG-O93OiCdrUaPTr_R55Ds6PyI6AG1xc1eqYMg7EaTJvmKIjul0-E4iekT8ku8k5avBb2vUu1WH_QO8Syj65yONlbFtR2itmB9prWT7aZD5slwHo-8upCCt-qHhccQkrOeNAY_Jn0OXZEFmYFeEAAonTFtLX8UbnYmlTaaKQ7cRGDCyCB8I8PqHpN2vs71CaGSAxiNIV5gAg5CpZEUPAItjUgNMptT0rFTtHyrrDKWzeyc_dF-TvbsStnDUhZekHbxXupLRPkCrtzqfgHNfqf0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF20gnpSseK3K3hNTLabbXqssSFqWwqN6K1kNrtSLKlocqi_3tkktSgI3kK-mWXz3mzmvSHkSgDScCZdq-0JjgkKTyxwHbA0w1RMt_zELdu9DYYieuT3z95zLVYvtTBKqbL4TNlms_yXn85lYZbKcIaLDuKLv042EPg9t5JrbZLL2jnzOgjG47grGPJyTP0Yt5dX_OidUkJHuEOGy4dWFSOvdpGDLT9_-TH--612SXOl0qOjb_zZI2sq2yeqS017sxktQQhPo-Gy_IoiP6Wj3iAM6BMyTDySFLOc3lbFdtMPeoOIltJ5RqOF0XGtblGbsL7Q2st20SRx2IuDyKpbKVjTjptbDEE5bfta4-ekw6ElUifV0HYcAKlSpozpj8TpznyptGKSA9ceaNfTCOAY6tYBaWTzTB0S6nMArTDJc7TDQcjE8wX3QPlaJBq5zRFpmhBN3iqzjMkyOsd_7L8gW1E86E_6d8OHE7JtRs0snTL3lDTy90KdIebncF6O9Be-0as9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+25th+China+Conference+on+System+Simulation+Technology+and+its+Application+%28CCSSTA%29&rft.atitle=A+Model+Transfer+Framework+for+PEMFC+Water+Fault+Diagnosis+Based+on+Hybrid+Transfer+Learning+Strategy&rft.au=Gao%2C+Shangrui&rft.au=Sun%2C+Zhendong&rft.au=Li%2C+Mince&rft.au=Chen%2C+Zonghai&rft.date=2024-07-21&rft.pub=IEEE&rft.spage=595&rft.epage=599&rft_id=info:doi/10.1109%2FCCSSTA62096.2024.10691858&rft.externalDocID=10691858 |