A Model Transfer Framework for PEMFC Water Fault Diagnosis Based on Hybrid Transfer Learning Strategy

The proton exchange membrane fuel cell (PEMFC) is a "green" energy conversion device that is widely considered to be one of the best power sources for future electric vehicles and static energy systems. The task of fault diagnosis for PEMFC often faces the dilemma of data shortage, especia...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE 25th China Conference on System Simulation Technology and its Application (CCSSTA) pp. 595 - 599
Main Authors Gao, Shangrui, Sun, Zhendong, Li, Mince, Chen, Zonghai
Format Conference Proceeding
LanguageEnglish
Published IEEE 21.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The proton exchange membrane fuel cell (PEMFC) is a "green" energy conversion device that is widely considered to be one of the best power sources for future electric vehicles and static energy systems. The task of fault diagnosis for PEMFC often faces the dilemma of data shortage, especially in terms of internal faults of the fuel cell. To solve these problems, We proposed a method for model transfer based on hybrid transfer learning to solve the problem of insufficient data sets in the target domain. The key point of this approach is to use the TrAdaBoost algorithm for transfer learning. In order to meet the algorithm's requirements for initial diagnosis accuracy in practical applications, we combine a fine-tuning model transfer strategy with this algorithm. Compared with other methods, this method has significant improvement in water fault diagnosis accuracy.
AbstractList The proton exchange membrane fuel cell (PEMFC) is a "green" energy conversion device that is widely considered to be one of the best power sources for future electric vehicles and static energy systems. The task of fault diagnosis for PEMFC often faces the dilemma of data shortage, especially in terms of internal faults of the fuel cell. To solve these problems, We proposed a method for model transfer based on hybrid transfer learning to solve the problem of insufficient data sets in the target domain. The key point of this approach is to use the TrAdaBoost algorithm for transfer learning. In order to meet the algorithm's requirements for initial diagnosis accuracy in practical applications, we combine a fine-tuning model transfer strategy with this algorithm. Compared with other methods, this method has significant improvement in water fault diagnosis accuracy.
Author Chen, Zonghai
Gao, Shangrui
Li, Mince
Sun, Zhendong
Author_xml – sequence: 1
  givenname: Shangrui
  surname: Gao
  fullname: Gao, Shangrui
  email: gsr2399348615@mail.ustc.edu.cn
  organization: University of Science and Technology of China,Department of Automation,Hefei,China
– sequence: 2
  givenname: Zhendong
  surname: Sun
  fullname: Sun, Zhendong
  email: szd1996@ustc.edu.cn
  organization: University of Science and Technology of China,Department of Automation,Hefei,China
– sequence: 3
  givenname: Mince
  surname: Li
  fullname: Li, Mince
  email: limince@mail.ustc.edu.cn
  organization: University of Science and Technology of China,Department of Automation,Hefei,China
– sequence: 4
  givenname: Zonghai
  surname: Chen
  fullname: Chen, Zonghai
  email: chenzh@ustc.edu.cn
  organization: University of Science and Technology of China,Department of Automation,Hefei,China
BookMark eNpFj9FKwzAYRiPohc69gRfxAVb_JE3aXM66bsKGwgpejqT5U4JbKmlF-vYqKl59F4dz4Lsi57GPSMgtg4wx0HdVtd83S8VBq4wDzzMGSrNSlmdkrgtdCglCKQVwSXBJd73DI22SiYPHROtkTvjRp1fq-0SfV7u6oi9m_Cbm_TjSh2C62A9hoPdmQEf7SDeTTcH9J7ZoUgyxo_sxfZnddE0uvDkOOP_dGWnqVVNtFtun9WO13C6CZuOCl1K4ovReFErnVigHztsCwNoWHUeAAloQwMsWPfI2t7mX1jPpc65kLsWM3PxkAyIe3lI4mTQd_s6LTwsZVNo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCSSTA62096.2024.10691858
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350366600
EndPage 599
ExternalDocumentID 10691858
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-2853d78ff37694b36d0dfb700bbced2e0070c03028cefe2c4b4f5bf15f4265453
IEDL.DBID RIE
IngestDate Wed Oct 09 06:12:58 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-2853d78ff37694b36d0dfb700bbced2e0070c03028cefe2c4b4f5bf15f4265453
PageCount 5
ParticipantIDs ieee_primary_10691858
PublicationCentury 2000
PublicationDate 2024-July-21
PublicationDateYYYYMMDD 2024-07-21
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-21
  day: 21
PublicationDecade 2020
PublicationTitle 2024 IEEE 25th China Conference on System Simulation Technology and its Application (CCSSTA)
PublicationTitleAbbrev CCSSTA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.879879
Snippet The proton exchange membrane fuel cell (PEMFC) is a "green" energy conversion device that is widely considered to be one of the best power sources for future...
SourceID ieee
SourceType Publisher
StartPage 595
SubjectTerms Accuracy
Data models
Faces
Fault diagnosis
Feature extraction
Fuel cells
model transfer
Protons
Systems simulation
Transfer learning
Water resources
Title A Model Transfer Framework for PEMFC Water Fault Diagnosis Based on Hybrid Transfer Learning Strategy
URI https://ieeexplore.ieee.org/document/10691858
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Gk4sTfRPDa2mZplh1nXRnCxmATdxt9aSJD6UTbw_zrfUlbh4LgraQhLQnp9730fd8j5EYA0nCmQq8XCY4BCk89CAPwDMNQzHRlGrpyb-OJGD3yh0W0qMXqTgujtXbJZ9q3l-5ffrZWpT0qwx0u-ogvskVaGLlVYq1dcl37Zt7G8Ww2HwiGrBwDP8b9pv-PyikOOJJ9MmkeWeWLvPhlAb76_OXG-O93OiCdrUaPTr_R55Ds6PyI6AG1xc1eqYMg7EaTJvmKIjul0-E4iekT8ku8k5avBb2vUu1WH_QO8Syj65yONlbFtR2itmB9prWT7aZD5slwHo-8upCCt-qHhccQkrOeNAY_Jn0OXZEFmYFeEAAonTFtLX8UbnYmlTaaKQ7cRGDCyCB8I8PqHpN2vs71CaGSAxiNIV5gAg5CpZEUPAItjUgNMptT0rFTtHyrrDKWzeyc_dF-TvbsStnDUhZekHbxXupLRPkCrtzqfgHNfqf0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF20gnpSseK3K3hNTLabbXqssSFqWwqN6K1kNrtSLKlocqi_3tkktSgI3kK-mWXz3mzmvSHkSgDScCZdq-0JjgkKTyxwHbA0w1RMt_zELdu9DYYieuT3z95zLVYvtTBKqbL4TNlms_yXn85lYZbKcIaLDuKLv042EPg9t5JrbZLL2jnzOgjG47grGPJyTP0Yt5dX_OidUkJHuEOGy4dWFSOvdpGDLT9_-TH--612SXOl0qOjb_zZI2sq2yeqS017sxktQQhPo-Gy_IoiP6Wj3iAM6BMyTDySFLOc3lbFdtMPeoOIltJ5RqOF0XGtblGbsL7Q2st20SRx2IuDyKpbKVjTjptbDEE5bfta4-ekw6ElUifV0HYcAKlSpozpj8TpznyptGKSA9ceaNfTCOAY6tYBaWTzTB0S6nMArTDJc7TDQcjE8wX3QPlaJBq5zRFpmhBN3iqzjMkyOsd_7L8gW1E86E_6d8OHE7JtRs0snTL3lDTy90KdIebncF6O9Be-0as9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+25th+China+Conference+on+System+Simulation+Technology+and+its+Application+%28CCSSTA%29&rft.atitle=A+Model+Transfer+Framework+for+PEMFC+Water+Fault+Diagnosis+Based+on+Hybrid+Transfer+Learning+Strategy&rft.au=Gao%2C+Shangrui&rft.au=Sun%2C+Zhendong&rft.au=Li%2C+Mince&rft.au=Chen%2C+Zonghai&rft.date=2024-07-21&rft.pub=IEEE&rft.spage=595&rft.epage=599&rft_id=info:doi/10.1109%2FCCSSTA62096.2024.10691858&rft.externalDocID=10691858