Enhancing Text Recognition Performance Through Multi-Dimensional Data Analysis

This study presents a novel methodology for improving text recognition accuracy through multidimensional data analysis. By examining state-of-the-art algorithms and methods, the technical and practical challenges associated with text detection and recognition in natural scenes are identified and add...

Full description

Saved in:
Bibliographic Details
Published in2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN) pp. 787 - 792
Main Author Zhu, Huiming
Format Conference Proceeding
LanguageEnglish
Published IEEE 03.07.2024
Subjects
Online AccessGet full text
DOI10.1109/ICIPCN63822.2024.00136

Cover

Abstract This study presents a novel methodology for improving text recognition accuracy through multidimensional data analysis. By examining state-of-the-art algorithms and methods, the technical and practical challenges associated with text detection and recognition in natural scenes are identified and addressed. The approach presents innovative text region detection algorithms and text recognition models, complemented by differentiable binarization techniques and multidimensional data analysis. Extensive simulations and experiments validate the effectiveness of the approach, demonstrating significant improvements in accuracy over traditional methods across a wide range of datasets and scenarios. Specifically, experiments show that the proposed multidimensional data analysis approach achieves an average accuracy of about 98.35%, surpassing the average accuracy of about 95.99% achieved by traditional one-dimensional models. Furthermore, when comparing different methods in text region detection, the proposed approach consistently outperforms existing methods, with an average accuracy of about 98.77%, compared to about 95.85% and 96.19% for the alternative methods, respectively. These results underscore the superiority of the methodology in addressing the challenges of text recognition in natural scenes.
AbstractList This study presents a novel methodology for improving text recognition accuracy through multidimensional data analysis. By examining state-of-the-art algorithms and methods, the technical and practical challenges associated with text detection and recognition in natural scenes are identified and addressed. The approach presents innovative text region detection algorithms and text recognition models, complemented by differentiable binarization techniques and multidimensional data analysis. Extensive simulations and experiments validate the effectiveness of the approach, demonstrating significant improvements in accuracy over traditional methods across a wide range of datasets and scenarios. Specifically, experiments show that the proposed multidimensional data analysis approach achieves an average accuracy of about 98.35%, surpassing the average accuracy of about 95.99% achieved by traditional one-dimensional models. Furthermore, when comparing different methods in text region detection, the proposed approach consistently outperforms existing methods, with an average accuracy of about 98.77%, compared to about 95.85% and 96.19% for the alternative methods, respectively. These results underscore the superiority of the methodology in addressing the challenges of text recognition in natural scenes.
Author Zhu, Huiming
Author_xml – sequence: 1
  givenname: Huiming
  surname: Zhu
  fullname: Zhu, Huiming
  email: zhu178@sina.com
  organization: Dalian Polytechnic University,College of Arts and Information Engineering,Zhuanghe,Liaoning,China,116400
BookMark eNotjNFKwzAUhiPohc69gUheoPWcpE3Sy9FNLcw5pPcjbU7XQJtK24F7ewt69X_wffwP7DYMgRh7RogRIXsp8uKYH5Q0QsQCRBIDoFQ3bJ3pzMgUpNKo8Z4ddqG1ofbhzEv6mfkX1cM5-NkPgR9pbIaxXzTxsh2Hy7nlH5du9tHW9xSmpbEd39rZ8s1C18lPj-yusd1E6_9dsfJ1V-bv0f7zrcg3-8hnOEfotHHoUAsnhdLaqcTUxuhKaSeNtIIaFFaSc7WUYIFUUpmqTiBNBSE4uWJPf7eeiE7fo-_teD0hKAUajPwF5_FM0Q
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIPCN63822.2024.00136
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350367171
EndPage 792
ExternalDocumentID 10660708
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-1d78d1d172d32677d648c887b67d383a2ef12a3eddc330a0e64b8bc40552e10d3
IEDL.DBID RIE
IngestDate Wed Sep 18 05:50:16 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-1d78d1d172d32677d648c887b67d383a2ef12a3eddc330a0e64b8bc40552e10d3
PageCount 6
ParticipantIDs ieee_primary_10660708
PublicationCentury 2000
PublicationDate 2024-July-3
PublicationDateYYYYMMDD 2024-07-03
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-3
  day: 03
PublicationDecade 2020
PublicationTitle 2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN)
PublicationTitleAbbrev ICIPCN
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8770365
Snippet This study presents a novel methodology for improving text recognition accuracy through multidimensional data analysis. By examining state-of-the-art...
SourceID ieee
SourceType Publisher
StartPage 787
SubjectTerms Accuracy
Algorithm optimization
Analytical models
Data analysis
Image recognition
Machine learning
Multi-dimensional data mining
Refining
Text detection
Text mining
Text recognition
Title Enhancing Text Recognition Performance Through Multi-Dimensional Data Analysis
URI https://ieeexplore.ieee.org/document/10660708
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9fUZLPNpuc-aAWXIiv0VvKYVRG2IttLf72TbNeKIHgLgTxIJplJZr5vCLmz3KBaLh3jRmiWghfMGqeYsFJpDd4kNnh0H3M1e04floPlDqwesTAAEIPPoB-K0Zfv124TvsrwhCuFIqo7pINy1oC1dqhfwYf389F8McpRoJKAsEoCLbYI1Ms_0qZErTE9Ink7XhMs8t7f1Lbvtr-oGP89oWPS2wP06OJb9ZyQA6hOST6pXgN7RvVCC7xy6VMbG7Su6GKPD6BFk5qHRuwtGwd6_4aag45NbWhLU9IjxXRSjGZsly6BvQ1FzYTPtBceDRKPJlmWeZVqh1eIVZnHZ6hJoBSJkeC9k5IbDiq12jo02AYJCO7lGelW6wrOCU3LoZFaARcGUoOtvLOlwt64xeeFhwvSC2ux-mgIMVbtMlz-UX9FDsN-xChXeU269ecGblCX1_Y27uEXk4ChYg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD3pSseLbHLymJpttNj23lVbbpcgKvZU8ZlWErcj24q93stu1IgjeQiAP8vomyXzfEHJjuUFYzh3jRmgWgxfMGqeYsFJpDd5ENvzoTlM1eorv5935mqxecWEAoHI-g05IVn_5fulW4akMd7hSuET1NtlB4I-7NV1rzfsVvHc77o9n_RSXVBQ4VlEQxhZBfPlH4JQKN-72Sdq0WLuLvHVWpe24z19ijP_u0gFpbyh6dPYNPodkC4ojkg6Ll6CfUTzTDA9d-th4By0LOtswBGhWB-ehFfuWDYLAfy3OQQemNLQRKmmT7G6Y9UdsHTCBvfZEyYRPtBceTRKPRlmSeBVrh4eIVYnHi6iJIBeRkeC9k5IbDiq22jo02boRCO7lMWkVywJOCI3znpFaARcGYoOlvLO5wtq4xQuGh1PSDmOxeK8lMRbNMJz9kX9NdkfZdLKYjNOHc7IX5qbyeZUXpFV-rOASkb20V9V8fgE2OqSv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+5th+International+Conference+on+Image+Processing+and+Capsule+Networks+%28ICIPCN%29&rft.atitle=Enhancing+Text+Recognition+Performance+Through+Multi-Dimensional+Data+Analysis&rft.au=Zhu%2C+Huiming&rft.date=2024-07-03&rft.pub=IEEE&rft.spage=787&rft.epage=792&rft_id=info:doi/10.1109%2FICIPCN63822.2024.00136&rft.externalDocID=10660708