Improved TCN-Vine Copula Method for Wind Speed Prediction Using 5G+ Technology Data Transmission

Accurate wind speed prediction can facilitate the efficient utilization of wind energy. Therefore, a prediction method combining improved temporal convolutional network (TCN) with vine copula using 5G+ technology data transmission is proposed. Initially, the residual module in TCN is improved by usi...

Full description

Saved in:
Bibliographic Details
Published in2024 6th International Conference on Industrial Artificial Intelligence (IAI) pp. 1 - 6
Main Authors Zhan, Jin, He, Shaowei, Wang, Chunyu, Zheng, Yafeng
Format Conference Proceeding
LanguageEnglish
Published IEEE 21.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate wind speed prediction can facilitate the efficient utilization of wind energy. Therefore, a prediction method combining improved temporal convolutional network (TCN) with vine copula using 5G+ technology data transmission is proposed. Initially, the residual module in TCN is improved by using the attention mechanism and soft thresholding concept from deep residual shrinkage network (DRSN) for preliminary prediction. Subsequently, given the influence of meteorological factors on wind speed, the meteorological data are downscaled by using the kernel principal component analysis (KPCA), which reduces the complexity of the data under the premise of guaranteeing the complete features. Finally, a correction model based on vine copula is constructed, and the preliminary prediction values is corrected using the downscaled meteorological data to obtain the final prediction results. This paper takes wind turbines in a wind farm as the experimental subjects, and utilizes sensors and 5G+ technology to collect wind speed and related meteorological data. Experiments using measured data verifies the effectiveness of the proposed method.
AbstractList Accurate wind speed prediction can facilitate the efficient utilization of wind energy. Therefore, a prediction method combining improved temporal convolutional network (TCN) with vine copula using 5G+ technology data transmission is proposed. Initially, the residual module in TCN is improved by using the attention mechanism and soft thresholding concept from deep residual shrinkage network (DRSN) for preliminary prediction. Subsequently, given the influence of meteorological factors on wind speed, the meteorological data are downscaled by using the kernel principal component analysis (KPCA), which reduces the complexity of the data under the premise of guaranteeing the complete features. Finally, a correction model based on vine copula is constructed, and the preliminary prediction values is corrected using the downscaled meteorological data to obtain the final prediction results. This paper takes wind turbines in a wind farm as the experimental subjects, and utilizes sensors and 5G+ technology to collect wind speed and related meteorological data. Experiments using measured data verifies the effectiveness of the proposed method.
Author Zheng, Yafeng
He, Shaowei
Zhan, Jin
Wang, Chunyu
Author_xml – sequence: 1
  givenname: Jin
  surname: Zhan
  fullname: Zhan, Jin
  email: zhanjin@spic.com.cn
  organization: Qinghai Yellow River Mining Co., Ltd,Golmud,China
– sequence: 2
  givenname: Shaowei
  surname: He
  fullname: He, Shaowei
  email: 411874212@qq.com
  organization: Qinghai Yellow River Mining Co., Ltd,Golmud,China
– sequence: 3
  givenname: Chunyu
  surname: Wang
  fullname: Wang, Chunyu
  email: wangchunyu@spic.com.cn
  organization: State Nuclear Electric Power Planning Design & Research Institute Co., Ltd,Beijing,China
– sequence: 4
  givenname: Yafeng
  surname: Zheng
  fullname: Zheng, Yafeng
  email: 64932622@qq.com
  organization: State Nuclear Electric Power Planning Design & Research Institute Co., Ltd,Beijing,China
BookMark eNo1j81LwzAcQCPoQef-A5HcpfOXpPk6jqqzMD_AqseZNukWaJOS1sH-ewfq6V0eD94FOg0xOISuCSwIAX1bLkvBqOQLCjRfEJAMJM1P0FxLrRgHxoUg6hx9lf2Q4t5ZXBXP2YcPDhdx-O4MfnLTLlrcxoQ_fbD4bXBH6zU565vJx4DfRx-2mK9ucOWaXYhd3B7wnZkMrpIJY-_H8ahdorPWdKOb_3GGqof7qnjM1i-rsliuM6_JlBEpeFMrY10upKBSQWOBUaUby4SquQBea0O41AJAWko18JYpwWoOOpeazdDVb9Y75zZD8r1Jh83_N_sByINQTQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IAI63275.2024.10730724
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350356618
EndPage 6
ExternalDocumentID 10730724
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-1765cb8ade46762780cd03289cd368b5605b9a15796007d22905f3863b5094793
IEDL.DBID RIE
IngestDate Wed Nov 06 05:53:28 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-1765cb8ade46762780cd03289cd368b5605b9a15796007d22905f3863b5094793
PageCount 6
ParticipantIDs ieee_primary_10730724
PublicationCentury 2000
PublicationDate 2024-Aug.-21
PublicationDateYYYYMMDD 2024-08-21
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug.-21
  day: 21
PublicationDecade 2020
PublicationTitle 2024 6th International Conference on Industrial Artificial Intelligence (IAI)
PublicationTitleAbbrev IAI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8828335
Snippet Accurate wind speed prediction can facilitate the efficient utilization of wind energy. Therefore, a prediction method combining improved temporal...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Attention mechanisms
Complexity theory
Data communication
Feature extraction
improved temporal convolutional network
kernel principal component analysis
meteorological factors
Predictive models
Sensors
vine copula
Wind energy
Wind farms
Wind speed
wind speed prediction
Wind turbines
Title Improved TCN-Vine Copula Method for Wind Speed Prediction Using 5G+ Technology Data Transmission
URI https://ieeexplore.ieee.org/document/10730724
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ08qTvwmB2-S2qZNmh5lOjdhQ3DqbjOveQURtiHdxb_el3RzKAjeSmjSkpfkfeT9fo-xC105lIBSoDKlyPLcCqgsCAcGLJJG0CE3ZzjS_afsfqImK7B6wMIgYkg-w8g_hrt8Ny-XPlRGO5zWYy6zFmuR59aAtVao3yQurgbXA53KXJHXJ7No_fKPsilBa_R22Gj9vSZZ5D1a1hCVn7-oGP_9Q7usswHo8Ydv1bPHtnC2z16bAAE6Pu6OxDOZj7wbynPxYSgTzck-5S_kg_PHBXWkAfwljRcMD4kDXN1d8k2ond_Y2vKgy2gt-KBah417t-NuX6wKKIi3Iqk996MqwViHdBpqmZu4dJ4-ryhdqg2QraOgsIlHo5Kl4Dzzu6pSo1PwrHq0cQ9Yezaf4SHjJgYyRQC0dmkGFZ0DBksd2xjzXBUFHrGOn53poqHImK4n5viP9hO27YXkg7MyOWXt-mOJZ6TdazgPUv0Cpsikkg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDDABoog3HthQQl52nBGVRwtthESAbsUXXySE1FYoXfj1nJ2WCiQktiiKk8hn-zuf7_uOsTNZGYwAIw-FKr0kTbUHlQbPgAKNhAjS5eYMctl9Su6GYjgnqzsuDCK65DP07aU7yzeTcmZDZTTDaTymUbLK1gj4RdjQtea83zDILnqXPRlHqaB9X5T4i8d_FE5xuHGzyfLFF5t0kXd_VoNffv4SY_z3L22x9pKixx--wWebreB4h702IQI0vOjk3jM5kLzjCnTxgSsUzclD5S-0C-ePU2pIL7DHNNY03KUOcHF7zpfBdn6la80dmtFosGG1NiturotO15uXUPDesrC26o-iBKUN0nooo1QFpbECellpYqmAvB0BmQ4tH5V8BWO130UVKxmD1dWjqbvLWuPJGPcYVwGQMwIgpYkTqGglUFjKQAeYpiLLcJ-1be-Mpo1IxmjRMQd_3D9l691i0B_1e_n9IduwBrOh2ig8Yq36Y4bHhPU1nDgLfwFv-afb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+6th+International+Conference+on+Industrial+Artificial+Intelligence+%28IAI%29&rft.atitle=Improved+TCN-Vine+Copula+Method+for+Wind+Speed+Prediction+Using+5G%2B+Technology+Data+Transmission&rft.au=Zhan%2C+Jin&rft.au=He%2C+Shaowei&rft.au=Wang%2C+Chunyu&rft.au=Zheng%2C+Yafeng&rft.date=2024-08-21&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIAI63275.2024.10730724&rft.externalDocID=10730724