Improved TCN-Vine Copula Method for Wind Speed Prediction Using 5G+ Technology Data Transmission
Accurate wind speed prediction can facilitate the efficient utilization of wind energy. Therefore, a prediction method combining improved temporal convolutional network (TCN) with vine copula using 5G+ technology data transmission is proposed. Initially, the residual module in TCN is improved by usi...
Saved in:
Published in | 2024 6th International Conference on Industrial Artificial Intelligence (IAI) pp. 1 - 6 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
21.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate wind speed prediction can facilitate the efficient utilization of wind energy. Therefore, a prediction method combining improved temporal convolutional network (TCN) with vine copula using 5G+ technology data transmission is proposed. Initially, the residual module in TCN is improved by using the attention mechanism and soft thresholding concept from deep residual shrinkage network (DRSN) for preliminary prediction. Subsequently, given the influence of meteorological factors on wind speed, the meteorological data are downscaled by using the kernel principal component analysis (KPCA), which reduces the complexity of the data under the premise of guaranteeing the complete features. Finally, a correction model based on vine copula is constructed, and the preliminary prediction values is corrected using the downscaled meteorological data to obtain the final prediction results. This paper takes wind turbines in a wind farm as the experimental subjects, and utilizes sensors and 5G+ technology to collect wind speed and related meteorological data. Experiments using measured data verifies the effectiveness of the proposed method. |
---|---|
AbstractList | Accurate wind speed prediction can facilitate the efficient utilization of wind energy. Therefore, a prediction method combining improved temporal convolutional network (TCN) with vine copula using 5G+ technology data transmission is proposed. Initially, the residual module in TCN is improved by using the attention mechanism and soft thresholding concept from deep residual shrinkage network (DRSN) for preliminary prediction. Subsequently, given the influence of meteorological factors on wind speed, the meteorological data are downscaled by using the kernel principal component analysis (KPCA), which reduces the complexity of the data under the premise of guaranteeing the complete features. Finally, a correction model based on vine copula is constructed, and the preliminary prediction values is corrected using the downscaled meteorological data to obtain the final prediction results. This paper takes wind turbines in a wind farm as the experimental subjects, and utilizes sensors and 5G+ technology to collect wind speed and related meteorological data. Experiments using measured data verifies the effectiveness of the proposed method. |
Author | Zheng, Yafeng He, Shaowei Zhan, Jin Wang, Chunyu |
Author_xml | – sequence: 1 givenname: Jin surname: Zhan fullname: Zhan, Jin email: zhanjin@spic.com.cn organization: Qinghai Yellow River Mining Co., Ltd,Golmud,China – sequence: 2 givenname: Shaowei surname: He fullname: He, Shaowei email: 411874212@qq.com organization: Qinghai Yellow River Mining Co., Ltd,Golmud,China – sequence: 3 givenname: Chunyu surname: Wang fullname: Wang, Chunyu email: wangchunyu@spic.com.cn organization: State Nuclear Electric Power Planning Design & Research Institute Co., Ltd,Beijing,China – sequence: 4 givenname: Yafeng surname: Zheng fullname: Zheng, Yafeng email: 64932622@qq.com organization: State Nuclear Electric Power Planning Design & Research Institute Co., Ltd,Beijing,China |
BookMark | eNo1j81LwzAcQCPoQef-A5HcpfOXpPk6jqqzMD_AqseZNukWaJOS1sH-ewfq6V0eD94FOg0xOISuCSwIAX1bLkvBqOQLCjRfEJAMJM1P0FxLrRgHxoUg6hx9lf2Q4t5ZXBXP2YcPDhdx-O4MfnLTLlrcxoQ_fbD4bXBH6zU565vJx4DfRx-2mK9ucOWaXYhd3B7wnZkMrpIJY-_H8ahdorPWdKOb_3GGqof7qnjM1i-rsliuM6_JlBEpeFMrY10upKBSQWOBUaUby4SquQBea0O41AJAWko18JYpwWoOOpeazdDVb9Y75zZD8r1Jh83_N_sByINQTQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IAI63275.2024.10730724 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350356618 |
EndPage | 6 |
ExternalDocumentID | 10730724 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i91t-1765cb8ade46762780cd03289cd368b5605b9a15796007d22905f3863b5094793 |
IEDL.DBID | RIE |
IngestDate | Wed Nov 06 05:53:28 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-1765cb8ade46762780cd03289cd368b5605b9a15796007d22905f3863b5094793 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10730724 |
PublicationCentury | 2000 |
PublicationDate | 2024-Aug.-21 |
PublicationDateYYYYMMDD | 2024-08-21 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-Aug.-21 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | 2024 6th International Conference on Industrial Artificial Intelligence (IAI) |
PublicationTitleAbbrev | IAI |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8828335 |
Snippet | Accurate wind speed prediction can facilitate the efficient utilization of wind energy. Therefore, a prediction method combining improved temporal... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Attention mechanisms Complexity theory Data communication Feature extraction improved temporal convolutional network kernel principal component analysis meteorological factors Predictive models Sensors vine copula Wind energy Wind farms Wind speed wind speed prediction Wind turbines |
Title | Improved TCN-Vine Copula Method for Wind Speed Prediction Using 5G+ Technology Data Transmission |
URI | https://ieeexplore.ieee.org/document/10730724 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ08qTvwmB2-S2qZNmh5lOjdhQ3DqbjOveQURtiHdxb_el3RzKAjeSmjSkpfkfeT9fo-xC105lIBSoDKlyPLcCqgsCAcGLJJG0CE3ZzjS_afsfqImK7B6wMIgYkg-w8g_hrt8Ny-XPlRGO5zWYy6zFmuR59aAtVao3yQurgbXA53KXJHXJ7No_fKPsilBa_R22Gj9vSZZ5D1a1hCVn7-oGP_9Q7usswHo8Ydv1bPHtnC2z16bAAE6Pu6OxDOZj7wbynPxYSgTzck-5S_kg_PHBXWkAfwljRcMD4kDXN1d8k2ond_Y2vKgy2gt-KBah417t-NuX6wKKIi3Iqk996MqwViHdBpqmZu4dJ4-ryhdqg2QraOgsIlHo5Kl4Dzzu6pSo1PwrHq0cQ9Yezaf4SHjJgYyRQC0dmkGFZ0DBksd2xjzXBUFHrGOn53poqHImK4n5viP9hO27YXkg7MyOWXt-mOJZ6TdazgPUv0Cpsikkg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDDABoog3HthQQl52nBGVRwtthESAbsUXXySE1FYoXfj1nJ2WCiQktiiKk8hn-zuf7_uOsTNZGYwAIw-FKr0kTbUHlQbPgAKNhAjS5eYMctl9Su6GYjgnqzsuDCK65DP07aU7yzeTcmZDZTTDaTymUbLK1gj4RdjQtea83zDILnqXPRlHqaB9X5T4i8d_FE5xuHGzyfLFF5t0kXd_VoNffv4SY_z3L22x9pKixx--wWebreB4h702IQI0vOjk3jM5kLzjCnTxgSsUzclD5S-0C-ePU2pIL7DHNNY03KUOcHF7zpfBdn6la80dmtFosGG1NiturotO15uXUPDesrC26o-iBKUN0nooo1QFpbECellpYqmAvB0BmQ4tH5V8BWO130UVKxmD1dWjqbvLWuPJGPcYVwGQMwIgpYkTqGglUFjKQAeYpiLLcJ-1be-Mpo1IxmjRMQd_3D9l691i0B_1e_n9IduwBrOh2ig8Yq36Y4bHhPU1nDgLfwFv-afb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+6th+International+Conference+on+Industrial+Artificial+Intelligence+%28IAI%29&rft.atitle=Improved+TCN-Vine+Copula+Method+for+Wind+Speed+Prediction+Using+5G%2B+Technology+Data+Transmission&rft.au=Zhan%2C+Jin&rft.au=He%2C+Shaowei&rft.au=Wang%2C+Chunyu&rft.au=Zheng%2C+Yafeng&rft.date=2024-08-21&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIAI63275.2024.10730724&rft.externalDocID=10730724 |