Research of composite health monitoring based on KPCA and GA-TWSVM

Aiming at the problem of composite anomaly detection and health monitoring, the improved twin support vector machine(TWSVM) with kernel principle component analysis(KPCA) is applied to aircraft composite health monitoring. Firstly, model of uniplanar multi-electrodes was partitioned into equal area...

Full description

Saved in:
Bibliographic Details
Published in2017 Prognostics and System Health Management Conference (PHM-Harbin) pp. 1 - 6
Main Authors Bao-yin Zhang, En-sheng Dong, Gang Guo
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aiming at the problem of composite anomaly detection and health monitoring, the improved twin support vector machine(TWSVM) with kernel principle component analysis(KPCA) is applied to aircraft composite health monitoring. Firstly, model of uniplanar multi-electrodes was partitioned into equal area units with FEM so that data was acquired enough. Secondly, KPCA was used to select the dimension of feature vectors and short training time, then the best features were found by TWSVM optimized with genetic algorithm, called GATWSVM for short. Finally, mesured data of three typical composite were sent to KPCA-GATWSVM for verification. After verification of the simulation and the measured data, the effective certificate of general KPCA-GATWSVM was applied to the health monitoring of aircraft composite material. The classification accuracy of the simulation data reached 93.8%, and result of the measured data reached 100%.
AbstractList Aiming at the problem of composite anomaly detection and health monitoring, the improved twin support vector machine(TWSVM) with kernel principle component analysis(KPCA) is applied to aircraft composite health monitoring. Firstly, model of uniplanar multi-electrodes was partitioned into equal area units with FEM so that data was acquired enough. Secondly, KPCA was used to select the dimension of feature vectors and short training time, then the best features were found by TWSVM optimized with genetic algorithm, called GATWSVM for short. Finally, mesured data of three typical composite were sent to KPCA-GATWSVM for verification. After verification of the simulation and the measured data, the effective certificate of general KPCA-GATWSVM was applied to the health monitoring of aircraft composite material. The classification accuracy of the simulation data reached 93.8%, and result of the measured data reached 100%.
Author Gang Guo
En-sheng Dong
Bao-yin Zhang
Author_xml – sequence: 1
  surname: Bao-yin Zhang
  fullname: Bao-yin Zhang
  email: zhangbaoyin026@163.com
  organization: Dept. of Aircraft Control, Aviation Univ. of Air Force, Changchun, China
– sequence: 2
  surname: En-sheng Dong
  fullname: En-sheng Dong
  email: dongensheng@tsinghua.org.cn
  organization: Dept. of Aircraft Control, Aviation Univ. of Air Force, Changchun, China
– sequence: 3
  surname: Gang Guo
  fullname: Gang Guo
  email: zhangbaoyin026@163.com
  organization: Dept. of Aircraft Control, Aviation Univ. of Air Force, Changchun, China
BookMark eNotj09LwzAcQKMouM3dBS_5Ap35syTNsRa3iRsOLXocSfOLjazJaHrx2yu4d3m3B2-KrmKKgNAdJQtKiX7Yb3YLRqhalERpuiwv0JQKXkrCFRGXaMKolIWQQt6gec7f5A-l9JKJCXp8gwxmaDucPG5Tf0o5jIA7MMexw32KYUxDiF_YmgwOp4hf9nWFTXR4XRXN5_vH7hZde3PMMD97hprVU1Nviu3r-rmutkXQZCy8V6AECGZ92wpQ2jkFxgrQUlNlbKlAGyFL5cGZ1lrNOHeaEca8Y5JTPkP3_9kAAIfTEHoz_BzOx_wXYQxLBg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PHM.2017.8079148
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1538603705
9781538603703
EISSN 2166-5656
EndPage 6
ExternalDocumentID 8079148
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-ff7e75e52bfcc5e79dd7eab5e96917ab87e9a5687fedacbb9233d92022fd26313
IEDL.DBID RIE
IngestDate Wed Jun 26 19:27:25 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-ff7e75e52bfcc5e79dd7eab5e96917ab87e9a5687fedacbb9233d92022fd26313
PageCount 6
ParticipantIDs ieee_primary_8079148
PublicationCentury 2000
PublicationDate 2017-July
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-July
PublicationDecade 2010
PublicationTitle 2017 Prognostics and System Health Management Conference (PHM-Harbin)
PublicationTitleAbbrev PHM
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000779425
Score 1.6781791
Snippet Aiming at the problem of composite anomaly detection and health monitoring, the improved twin support vector machine(TWSVM) with kernel principle component...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Capacitance
Composite materials
Electrodes
genetic algorithm
Genetic algorithms
health monitoring
Kernel
kernel principle component analysis
Monitoring
Support vector machines
twin support vector machine
uniplanar capacitance sensor
Title Research of composite health monitoring based on KPCA and GA-TWSVM
URI https://ieeexplore.ieee.org/document/8079148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anvTioxXf5ODR3W43TbI51mItykrBqr2VPGZBpLsi24u_3mS3rQ88eAshISEPvsnM900ALmLsGwcdNDBJRL23SgUOhrPAWQaU9zhSlniBc3rPx4_92xmbNeByo4VBxIp8hqEvVrF8W5ild5V1k0hIZ743oSmkrLVaG39KJNzJitk6EhnJ7mSceuqWCFfdfvyfUsHHaAfS9cA1a-Q1XJY6NB-_cjL-d2a70PkS6pHJBoL2oIH5Pmx_yzHYhqs1t44UGfEEcs_SQlLrH8miutK-JfF4ZkmRk7vJcEBUbsnNIJg-PzylHZiOrqfDcbD6OCF4kVEZZJlAwZDFOjOGoZDWClSaoeTucaZ0IlAqxhORoVVGa2fjUStjh-aZjTnt0QNo5UWOh0AiqqVQzD1dkfddd50YZZ2R4mPosTDsCNp-MeZvdWqM-Wodjv-uPoEtvyE12_UUWuX7Es8cppf6vNrMT_pSn8Q
link.rule.ids 310,311,783,787,792,793,799,23943,23944,25153,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VcgAuLC1ixweOpE3jOo6PpaIE2lSVCNBbFdsTCSEShNILX4-dtGURB25RFMuRF73nmffGABcedpWBDuqowKU2WpU4BoZTxzAD6nd8pCywBudo7IcP3bspm9bgcuWFQcRSfIYt-1jm8nWu5jZU1g5cLgx9X4N1w6sDXrm1VhEVl5u15bFlLtIV7UkYWfEWby0a_rhBpQSQwTZEy64r3chLa17Ilvr4VZXxv_-2A80vqx6ZrEBoF2qY7cHWtyqDDbhaqutInhIrIbc6LSSVA5K8lpvafkksommSZ2Q46fdIkmly03Pip_vHqAnx4Druh87i6gTnWbiFk6YcOUPmyVQphlxozTGRDIVvjmeJDDiKhPkBT1EnSkrD8qgWnsHzVHs-7dB9qGd5hgdAXCoFT5g5vKLfNc1loBJtaIrNontcsUNo2MGYvVXFMWaLcTj6-_U5bIRxNJqNbsfDY9i0k1NpX0-gXrzP8dQgfCHPyon9BIgZoxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+Prognostics+and+System+Health+Management+Conference+%28PHM-Harbin%29&rft.atitle=Research+of+composite+health+monitoring+based+on+KPCA+and+GA-TWSVM&rft.au=Bao-yin+Zhang&rft.au=En-sheng+Dong&rft.au=Gang+Guo&rft.date=2017-07-01&rft.pub=IEEE&rft.eissn=2166-5656&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FPHM.2017.8079148&rft.externalDocID=8079148