Fake Accounts Detection on Twitter Using Blacklist

Social networking sites such as Twitter, Facebook, Weibo etc. are extremely mainstream today. Also, the greater part of the malicious users utilize these sites to persuade legitimate users for different purposes, for example, to promote their products item, to enter their spam links, to stigmatize o...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE ACIS 17th International Conference on Computer and Information Science (ICIS) pp. 562 - 566
Main Authors Swe, Myo Myo, Nyein Myo, Nyein
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text
DOI10.1109/ICIS.2018.8466499

Cover

Abstract Social networking sites such as Twitter, Facebook, Weibo etc. are extremely mainstream today. Also, the greater part of the malicious users utilize these sites to persuade legitimate users for different purposes, for example, to promote their products item, to enter their spam links, to stigmatize other persons and so forth. An ever increasing number of users are utilized these social networking sites and fake accounts on these destinations are turned into a major issue. In this paper, fake accounts are detected using blacklist instead of traditional spam words list. Blacklist is created by using topic modeling approach and keyword extraction approach. We conduct an evaluation experiment with not only 1KS - 10KN dataset but also Social Honeypot dataset. The accuracy of the traditional spam words list based approach and our blacklist based approach are compared. Decorate, a meta-learner classifier is applied for classifying fake accounts on Twitter from legitimate accounts. Our approach achieves 95.4% accuracy and true positive rate is 0.95.
AbstractList Social networking sites such as Twitter, Facebook, Weibo etc. are extremely mainstream today. Also, the greater part of the malicious users utilize these sites to persuade legitimate users for different purposes, for example, to promote their products item, to enter their spam links, to stigmatize other persons and so forth. An ever increasing number of users are utilized these social networking sites and fake accounts on these destinations are turned into a major issue. In this paper, fake accounts are detected using blacklist instead of traditional spam words list. Blacklist is created by using topic modeling approach and keyword extraction approach. We conduct an evaluation experiment with not only 1KS - 10KN dataset but also Social Honeypot dataset. The accuracy of the traditional spam words list based approach and our blacklist based approach are compared. Decorate, a meta-learner classifier is applied for classifying fake accounts on Twitter from legitimate accounts. Our approach achieves 95.4% accuracy and true positive rate is 0.95.
Author Swe, Myo Myo
Nyein Myo, Nyein
Author_xml – sequence: 1
  givenname: Myo Myo
  surname: Swe
  fullname: Swe, Myo Myo
  organization: Web Data Mining Lab, University of Computer Studies, Mandalay, Mandalay, Myanmar
– sequence: 2
  givenname: Nyein
  surname: Nyein Myo
  fullname: Nyein Myo, Nyein
  organization: Faculty of Information Science, University of Computer Studies, Mandalay, Mandalay, Myanmar
BookMark eNotj81KxDAURiM4oPPzAOKmL9B6b9KkyXKsjhYGXFjXQ5reSJzaShMR394BBz44u8P5luxynEZi7AahQARz19TNa8EBdaFLpUpjLtgSpdBKasPlFdvE-AEAXOnSoLhmfGePlG2dm77HFLMHSuRSmMbstPYnpERz9hbD-J7dD9YdhxDTmi28HSJtzlyxdvfY1s_5_uWpqbf7PBhIue80KomKug6dkB6EleRk70tPxlvlqPccq94ZYS1UTtkKQKPETp3aQIoVu_3XBiI6fM3h086_h_Mr8QfesERC
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIS.2018.8466499
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538658925
9781538658925
EndPage 566
ExternalDocumentID 8466499
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i90t-fb816516ebb1c35f03a5ec5df4fe9fa6cedf217dc93aa07c6a7008151b6684053
IEDL.DBID RIE
IngestDate Wed Aug 27 02:53:46 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-fb816516ebb1c35f03a5ec5df4fe9fa6cedf217dc93aa07c6a7008151b6684053
PageCount 5
ParticipantIDs ieee_primary_8466499
PublicationCentury 2000
PublicationDate 2018-June
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-June
PublicationDecade 2010
PublicationTitle 2018 IEEE ACIS 17th International Conference on Computer and Information Science (ICIS)
PublicationTitleAbbrev ICIS
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002684913
Score 1.7116752
Snippet Social networking sites such as Twitter, Facebook, Weibo etc. are extremely mainstream today. Also, the greater part of the malicious users utilize these sites...
SourceID ieee
SourceType Publisher
StartPage 562
SubjectTerms Blacklisting
Decorate
Feature extraction
keyword extraction approach
Support vector machines
topic modeling approach
Training
Twitter
Title Fake Accounts Detection on Twitter Using Blacklist
URI https://ieeexplore.ieee.org/document/8466499
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qT55UWvHNHjya7cY8dnOullaoCFborSTZCZTKVnSL4K83ya4VxYOQQwgseS2ZzOT7vgG4VJxq6Ywg3qFlhNNMESVMSaR1khf2usxY4A5P7-X4id_NxbwDV1suDCJG8BmmoRrf8su13YRQ2aAIWuhK7cCO_80artY2nhJUSxRl7cOl73MwGU4eA3arSNvvfiRQifZjtAfTr54b2Mgq3dQmtR-_RBn_O7R96H8z9ZKHrQ06gA5WPfDn7gqTNg_EW3KDdcRbVYkvs_dl4O8kESqQxPDds9_pPsxGt7PhmLS5EchSZTVxpqBSUInGUMuE8ysq0IrScYfKaWmxdN7ZKK1iWme5lToPxl9QI4O6i2CH0K3WFR5BonK0OvdemOQ518wqIbS_5BRcZNo7X-oYemG6i5dG_WLRzvTk7-ZT2A1L3oCpzqBbv27w3Jvt2lzE_foEJp-Www
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL3M-aBPKpv4bR98NF1jPto8T2XTbQhW2NtI0gTGpBPtEPz1JmmdKD4IfSiFkC_oyb0551yAC0Gx5FYx5AJagihOBBJMFYhry2mmr4qEeO3weMIHT_RuyqYtuFxrYYwxgXxmYv8a7vKLpV75VFkv817oQmzApsN9ymq11jqj4n1LBCbN1aXrtTfsDx89eyuLm5Y_SqgEBLndgfFX3zVxZBGvKhXrj1-2jP8d3C50v7V60cMahfagZcoOuD_vwkRNJYi36NpUgXFVRu7J3-dewRMFskAUEnjPbq-7kN_e5P0BaqojoLlIKmRVhjnD3CiFNWHWrSkzmhWWWiOs5NoU1oUbhRZEyiTVXKYe_hlW3Pu7MLIP7XJZmgOIRGq0TF0cxmlKJdGCMemOORlliXThlziEjp_u7KX2v5g1Mz36-_M5bA3y8Wg2Gk7uj2HbL39NrTqBdvW6MqcOxCt1FvbuE0AomhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+ACIS+17th+International+Conference+on+Computer+and+Information+Science+%28ICIS%29&rft.atitle=Fake+Accounts+Detection+on+Twitter+Using+Blacklist&rft.au=Swe%2C+Myo+Myo&rft.au=Nyein+Myo%2C+Nyein&rft.date=2018-06-01&rft.pub=IEEE&rft.spage=562&rft.epage=566&rft_id=info:doi/10.1109%2FICIS.2018.8466499&rft.externalDocID=8466499