Efficient solution of large-scale domestic hyperspectral data processing and geological application

As we have entered an era of information, the RS data are undergoing a plosive growth. The needs of large-scale earth observation have led to the development of high-resolution and high-dimensionality RS data, which has posed significant challenges in processing and application. In this paper, we de...

Full description

Saved in:
Bibliographic Details
Published in2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP) pp. 1 - 4
Main Authors Junchuan Yu, Bokun Yan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As we have entered an era of information, the RS data are undergoing a plosive growth. The needs of large-scale earth observation have led to the development of high-resolution and high-dimensionality RS data, which has posed significant challenges in processing and application. In this paper, we demonstrate some possible solution of large-scale domestic hyperspectral data processing and geological application, mainly from three aspects.
AbstractList As we have entered an era of information, the RS data are undergoing a plosive growth. The needs of large-scale earth observation have led to the development of high-resolution and high-dimensionality RS data, which has posed significant challenges in processing and application. In this paper, we demonstrate some possible solution of large-scale domestic hyperspectral data processing and geological application, mainly from three aspects.
Author Junchuan Yu
Bokun Yan
Author_xml – sequence: 1
  surname: Junchuan Yu
  fullname: Junchuan Yu
  email: jasonyu@live.cn
  organization: China Aero Geophys. Survey & Remote Sensing Center for Land & Resources, Beijing, China
– sequence: 2
  surname: Bokun Yan
  fullname: Bokun Yan
  email: bokun.yan@aliyun.com
  organization: China Aero Geophys. Survey & Remote Sensing Center for Land & Resources, Beijing, China
BookMark eNotj8FKxDAURSPowhn9AHGTH2hNmrRpljKMOjCg6OyH15eXGsg0pamL-XsrzupeLpwDd8WuhzQQYw9SlFIK-_T5tfsoKyFNaawRxugrtpK1ahtprVC3DLfeBww0zDyn-DOHNPDkeYSppyIjROIunSjPAfn3eaQpj4TzBJE7mIGPU0LKOQw9h8HxnlJMfVgwDuMYl_InvGM3HmKm-0uu2eFle9i8Ffv3193meV8EK-bCAyqlNRiwtqYOich0RhtE2akW6s56D1XT1q71NVWuUQ6x0VZpWibdqjV7_NeGBT2OUzjBdD5ebqtff25VBw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/RSIP.2017.7970774
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)【Remote access available】
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)【Remote access available】
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538619903
9781538619902
EndPage 4
ExternalDocumentID 7970774
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-fac3344a7a995ebceee7b747cc1b38a5b9ffa2685d8f5e2d63dcc64934e5d8483
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:01 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-fac3344a7a995ebceee7b747cc1b38a5b9ffa2685d8f5e2d63dcc64934e5d8483
PageCount 4
ParticipantIDs ieee_primary_7970774
PublicationCentury 2000
PublicationDate 2017-May
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-May
PublicationDecade 2010
PublicationTitle 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)
PublicationTitleAbbrev RSIP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6723193
Snippet As we have entered an era of information, the RS data are undergoing a plosive growth. The needs of large-scale earth observation have led to the development...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms alteration anomaly
Atmospheric modeling
big data
brdf
hyperspectral data
Hyperspectral imaging
Minerals
remote sensing
Satellites
Title Efficient solution of large-scale domestic hyperspectral data processing and geological application
URI https://ieeexplore.ieee.org/document/7970774
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCbbTp7UbMbf4eBRuq59lHI2W6bJzKIz2W0B-lDjbJfZXfzrhbbzVzx4I4QC4TV8PN73PQi5ECBVpEPBtMNeBmA1Sx2uMYjAKgkiMtqrkSe3yfgBbuZ83iKXn1oYRKzIZxj4YhXLzwqz8VdlfSFF6I4rbdIWUtZarSZQOQhl_-7-euq5WiJo2v14MKXCi9EumWxHqmkiL8Gm1IF5_5WE8b9T2SO9L2UenX5izj5pYd4lZljlgXAf0O2fRAtLl57kzd6cEZBmxatPp2Hok_M7a3nlWi2p54fSVa0VcP1RlWf0Ebf7If0W3e6R2Wg4uxqz5vEE9izDklll4hhACSUlR-2mhUI718GYgY5TxbW0VkVJyrPUcoyyJM6MSUDGgK4K0viAdPIix0NC3ZEKOIagQKJzpkECmCjhmEaSC5ThEen69Vms6vQYi2Zpjv-uPiE73kY1Z_CUdMr1Bs8crpf6vDLoB8_hp2Y
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRjbG9ruvZQECBEMWEG2m7NzXiRnBc_Ottt4E_4sFb07Rb09fse2_v-14JueIgpK887iiDvQ5AopzI4JoDPiRSAPe1smrk4SjsPcLtlE1r5HqjhUHEgnyGrm0Wufw40yv7q6zFBfeMu7JFtpn1K0q1VpWqbHuidf_QH1u2FnerkT-uTCkQo7tHhut3lUSRV3eVK1d__CrD-N_F7JPmlzaPjjeoc0BqmDaI7hSVIMwEuj5LNEvo3NK8nXdjBqRx9mYLamj6bCLPUmC5lHNqGaJ0UaoFzPOoTGP6hOsvIv2W326SSbczuek51fUJzovwcieROggAJJdCMFRmWciVCR60bqsgkkyJJJF-GLE4Shj6cRjEWocgAkDTBVFwSOppluIRocapAoYeSBBowmkQANoPGUa-YByFd0wadn9mi7JAxqzampO_uy_JTm8yHMwG_dHdKdm19ioZhGekni9XeG5QPlcXhXE_Ab3wqrM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+International+Workshop+on+Remote+Sensing+with+Intelligent+Processing+%28RSIP%29&rft.atitle=Efficient+solution+of+large-scale+domestic+hyperspectral+data+processing+and+geological+application&rft.au=Junchuan+Yu&rft.au=Bokun+Yan&rft.date=2017-05-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FRSIP.2017.7970774&rft.externalDocID=7970774