Containment control of networked autonomous underwater vehicles guided by multiple leaders using predictor-based neural DSC approach
This paper considers the containment control of multiple autonomous underwater vehicles (AUVs) in the presence of model uncertainty and time-varying ocean disturbances. A new predictor-based neural dynamic surface control design approach is proposed to develop adaptive containment controllers, under...
Saved in:
Published in | Fifth International Conference on Intelligent Control and Information Processing pp. 360 - 365 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2014
|
Subjects | |
Online Access | Get full text |
ISBN | 1479936499 9781479936496 |
DOI | 10.1109/ICICIP.2014.7010278 |
Cover
Abstract | This paper considers the containment control of multiple autonomous underwater vehicles (AUVs) in the presence of model uncertainty and time-varying ocean disturbances. A new predictor-based neural dynamic surface control design approach is proposed to develop adaptive containment controllers, under which the trajectories of AUVs converge to the dynamic convex hull spanned by the dynamic leaders. The prediction errors are used to update the neural adaptive laws, which enables fast identifying the vehicle dynamics without excessive knowledge of their dynamical models. The stability properties of the closed-loop network are established via Lyapunov analysis, and the containment errors converge to an adjustable neighborhood of the origin. Comparative studies are given to show the effectiveness of the proposed method. |
---|---|
AbstractList | This paper considers the containment control of multiple autonomous underwater vehicles (AUVs) in the presence of model uncertainty and time-varying ocean disturbances. A new predictor-based neural dynamic surface control design approach is proposed to develop adaptive containment controllers, under which the trajectories of AUVs converge to the dynamic convex hull spanned by the dynamic leaders. The prediction errors are used to update the neural adaptive laws, which enables fast identifying the vehicle dynamics without excessive knowledge of their dynamical models. The stability properties of the closed-loop network are established via Lyapunov analysis, and the containment errors converge to an adjustable neighborhood of the origin. Comparative studies are given to show the effectiveness of the proposed method. |
Author | Jun Wang Zhouhua Peng Dan Wang |
Author_xml | – sequence: 1 surname: Zhouhua Peng fullname: Zhouhua Peng email: zhouhuapeng@gmail.com organization: Sch. of Marine Eng., Dalian Maritime Univ., Dalian, China – sequence: 2 surname: Dan Wang fullname: Dan Wang email: dwangdl@gmail.com organization: Sch. of Marine Eng., Dalian Maritime Univ., Dalian, China – sequence: 3 surname: Jun Wang fullname: Jun Wang email: jwang@mae.cuhk.edu.hk organization: Sch. of Control Sci. & Eng., Dalian Univ. of Technol., Dalian, China |
BookMark | eNpFkMtOwzAQRY2ABS18QTf-gRTbcR5eovCqVAkkuq_8mLQWjh05DlX3fDiWQEKzuHPvHM3iLtCVDx4QWlGyppSI-02X533NCOXrhlDCmvYCLShvhChr3pLLfyPEDfrugk_S-gF8wjrvMTgceuwhnUL8BIPlnIIPQ5gnPHsD8SQTRPwFR6sdTPgwW5MpdcbD7JIdHWAHMnMZn6w_4DGCsTqFWCg5ZdLDHKXDjx8dluMYg9THW3TdSzfB3Z8u0e75ade9Ftu3l033sC2sIKnoRV1R3soapK77VvWUMqpVZThTCiSrTY5Ua1rgVcMZrRivTO5Bi3wWZVku0er3rQWA_RjtION5_1dS-QNc_2Na |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICICIP.2014.7010278 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1479936480 9781479936502 9781479936489 1479936502 |
EndPage | 365 |
ExternalDocumentID | 7010278 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-f965148a6eac6f8bf1121cb5d42bbea26dbf1b8d8e4574215245d201c9bbe9333 |
IEDL.DBID | RIE |
ISBN | 1479936499 9781479936496 |
IngestDate | Wed Jun 26 19:23:44 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-f965148a6eac6f8bf1121cb5d42bbea26dbf1b8d8e4574215245d201c9bbe9333 |
PageCount | 6 |
ParticipantIDs | ieee_primary_7010278 |
PublicationCentury | 2000 |
PublicationDate | 2014-Aug. |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-Aug. |
PublicationDecade | 2010 |
PublicationTitle | Fifth International Conference on Intelligent Control and Information Processing |
PublicationTitleAbbrev | ICICIP |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.5824902 |
Snippet | This paper considers the containment control of multiple autonomous underwater vehicles (AUVs) in the presence of model uncertainty and time-varying ocean... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 360 |
SubjectTerms | Artificial neural networks Marine vehicles Sea surface Uncertainty Vehicle dynamics Vehicles |
Title | Containment control of networked autonomous underwater vehicles guided by multiple leaders using predictor-based neural DSC approach |
URI | https://ieeexplore.ieee.org/document/7010278 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN60PXlS0xrfmYNHoVCWZTlXm2pS08Sa9Naw7G5tbKBB0OjZH-4sj_qIB8MFdgjZDBvmG-abbwm5GFCFJldavh9oC_MvZokoCqyAK808FsWOZ_qdJ3ds_EBv5_68RS63vTBKqZJ8pmxzWtbyZRoX5ldZPzACaAFvkzYus2-9WgEGWYbQvZFwqq9ZrTLkOmH_ZojH1FC5qF0_5sd-KmU4Ge2SSTORikXyZBe5sOP3XxqN_53pHul9Ne7BdBuS9klLJV3yYRSo6rI_1NR0SDUkFQNcSYiK3PQ2pMUzmJ6y7BUBaAYv6rHkzMGyWEm8S7xBQz-EdcWABkObX8ImM-UezN4tExQlGJHMaA1X90NoNMt7ZDa6ng3HVr35grUKndzSIUMoxSOGH2amudCIy9xY-JIOhFDRgEkcElxyRX3MrhEFUF-id-MQzaHneQekk6SJOiTgaKZDikjLjX2qqYP2mGuFQEVwprR3RLrGgYtNJa-xqH13_PfwCdkxL7Hi4J2STp4V6gxxQS7OywXxCXiRujA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDDABahFvPDDiNG1sJ5kLVQttVYkidavi2C4VVVKFBAQzP5xzHuUhBpQl8UWRdYly3_m--4zQZZsqMLUkYczVBPIvTkQQuMT1lOYOD0LbMf3OwxHvPdDbKZtuoKt1L4xSKiefKcuc5rV8GYeZWSprukYAzfU20RbEfcq-dWu5EGY5gPdKxKm85qXOUMv2m_0OHGND5qJW-aAfO6rkAaW7i4bVVAoeyZOVpcIK33-pNP53rnuo8dW6h8froLSPNlRURx9Gg6os_OOSnI5jjaOCA64kDrLUdDfE2TM2XWXJK0DQBL-ox5w1h-fZQsJd4g1XBES8LDjQ2BDn53iVmIIP5O_EhEWJjUxmsMTX9x1cqZY30KR7M-n0SLn9Aln4dkq0zwFMeQGHXzPXntCAzFqhYJK2hVBBm0sYEp70FGWQXwMOoEyCd0MfzL7jOAeoFsWROkTY1lz7FLBWK2RUUxvsoacVQBXhcaWdI1Q3DpytCoGNWem747-HL9B2bzIczAb90d0J2jEvtGDknaJammTqDFBCKs7zj-MTYk29fQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Fifth+International+Conference+on+Intelligent+Control+and+Information+Processing&rft.atitle=Containment+control+of+networked+autonomous+underwater+vehicles+guided+by+multiple+leaders+using+predictor-based+neural+DSC+approach&rft.au=Zhouhua+Peng&rft.au=Dan+Wang&rft.au=Jun+Wang&rft.date=2014-08-01&rft.pub=IEEE&rft.isbn=1479936499&rft.spage=360&rft.epage=365&rft_id=info:doi/10.1109%2FICICIP.2014.7010278&rft.externalDocID=7010278 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479936496/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479936496/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479936496/sc.gif&client=summon&freeimage=true |