V94.2 gas turbine identification using neural network
This paper presents the identification of V94.2 gas turbine. This turbine is built by Siemens. It has 162.1 MW nominal power and 50 Hz nominal frequency and is located at Kermanshah power plant, Kermanshah city of Iran. The stored data from turbine include fuel pressure valve angle and IGV 1 angle a...
Saved in:
Published in | 2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM) pp. 523 - 529 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.02.2013
|
Subjects | |
Online Access | Get full text |
ISBN | 1467358096 9781467358095 |
DOI | 10.1109/ICRoM.2013.6510160 |
Cover
Abstract | This paper presents the identification of V94.2 gas turbine. This turbine is built by Siemens. It has 162.1 MW nominal power and 50 Hz nominal frequency and is located at Kermanshah power plant, Kermanshah city of Iran. The stored data from turbine include fuel pressure valve angle and IGV 1 angle as inputs and compressor output pressure, compressor output temperature, fuel pressure, turbine output power and turbine output temperature as outputs. To simplify identification process, the system turns into MISO 2 systems to the number of outputs, and then correlation analysis is used to examine the dependence of the outputs to each input and other outputs. For turbine identification, dynamic linear models are estimated and then Feedforward neural network with one hidden layer is trained. The result shows dynamic linear models have poor performance in comparison with Feedforward neural network with one hidden layer. The neural network is able to identify a predictor model with fitness over 96% for outputs of V94.2 gas turbine. |
---|---|
AbstractList | This paper presents the identification of V94.2 gas turbine. This turbine is built by Siemens. It has 162.1 MW nominal power and 50 Hz nominal frequency and is located at Kermanshah power plant, Kermanshah city of Iran. The stored data from turbine include fuel pressure valve angle and IGV 1 angle as inputs and compressor output pressure, compressor output temperature, fuel pressure, turbine output power and turbine output temperature as outputs. To simplify identification process, the system turns into MISO 2 systems to the number of outputs, and then correlation analysis is used to examine the dependence of the outputs to each input and other outputs. For turbine identification, dynamic linear models are estimated and then Feedforward neural network with one hidden layer is trained. The result shows dynamic linear models have poor performance in comparison with Feedforward neural network with one hidden layer. The neural network is able to identify a predictor model with fitness over 96% for outputs of V94.2 gas turbine. |
Author | Yari, M. Aliyari Shoorehdeli, Mahdi Yousefi, I. |
Author_xml | – sequence: 1 givenname: M. surname: Yari fullname: Yari, M. email: mostafayari@ee.kntu.ac.ir organization: Electr. Eng. Fac., K.N.Toosi Univ. of Technol., Tehran, Iran – sequence: 2 givenname: Mahdi surname: Aliyari Shoorehdeli fullname: Aliyari Shoorehdeli, Mahdi email: aliyari@eetd.kntu.ac.ir organization: Electr. Eng. Fac., K.N.Toosi Univ. of Technol., Tehran, Iran – sequence: 3 givenname: I. surname: Yousefi fullname: Yousefi, I. email: Imanyousefi@ieee.org organization: MAPNA Electr. & Control Eng. & Manuf. Co.- MECO, Karaj, Iran |
BookMark | eNo9j1FLwzAUhSMq6Ob-gL7kD7TeJM1t8yhF52BjIEN8G0l7M6IzlaZF_PcWHD59nIfzcc6MXcQuEmO3AnIhwNyv6pduk0sQKkctQCCcsZkosFS6EvB2_h_A4BVbpPQOAFMTjVbXTL-aIpf8YBMfxt6FSDy0FIfgQ2OH0EU-phAPPNLY2-OE4bvrP27YpbfHRIsT52z39Lirn7P1drmqH9ZZMDBkvpK6qNA5aKX0rW6sU-QKRIWtldNYo61tkExhPGmApiyFaLxzHsBVulRzdvenDUS0_-rDp-1_9qeX6hcyq0eR |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICRoM.2013.6510160 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 146735810X 1467358118 9781467358118 9781467358101 |
EndPage | 529 |
ExternalDocumentID | 6510160 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-f825486bb0d22fd5cab3eb46636da265195aac6e949fe500c7711cfbbf00b8573 |
IEDL.DBID | RIE |
ISBN | 1467358096 9781467358095 |
IngestDate | Wed Aug 27 03:22:53 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-f825486bb0d22fd5cab3eb46636da265195aac6e949fe500c7711cfbbf00b8573 |
PageCount | 7 |
ParticipantIDs | ieee_primary_6510160 |
PublicationCentury | 2000 |
PublicationDate | 2013-Feb. |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-Feb. |
PublicationDecade | 2010 |
PublicationTitle | 2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM) |
PublicationTitleAbbrev | ICRoM |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001106953 |
Score | 1.565306 |
Snippet | This paper presents the identification of V94.2 gas turbine. This turbine is built by Siemens. It has 162.1 MW nominal power and 50 Hz nominal frequency and is... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 523 |
SubjectTerms | Computational modeling gas turbine Heating linear model MATLAB neural network Neural networks nonlinear model system identification Turbines |
Title | V94.2 gas turbine identification using neural network |
URI | https://ieeexplore.ieee.org/document/6510160 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7dbTbZJJtzsVShIlKlt5LHbClKK3Z78debZLctigdPeRxCXjCZyfd9g9ANgaCizllSFlQmORiX6PCQ05C7jEkrTQzmjB_F6CV_mPJpC93uuDAAEMFnkIZq_Mt3K7sJobK-4FEQrY3a_prVXK19PMX7NoqzyN0SMnzu1bJ9QdKpafMtaYao_v3geTUOyC6WNqP-SK8SrcvwEI2386pBJW_ppjKp_fol2fjfiR-h3p7Hh592FuoYtWDZRfxV5SnFc73G3tx4xxjwwjWYoXhMOGDh5zgoXep3X0SceA9NhneTwShpkickC0WqsPXeFxHGEEdp6bjVhoHJ_ftCOE1F0JTR2gpQuSqBE2KlzDJbGlMSYgou2QnqLFdLOEVYWmCElNxRbXJTMM0dz7TSRSaks1SeoW5Y8eyjlseYNYs9_7v7Ah3QmFEiIEIuUaf63MCVt-uVuY4H-g0OXp24 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKGWAC1CLeZGAkqeNnPFdULTQVQgV1q_xKVYFaBOnC12M7aSsQA1MSD5HtOxzf63POBeAGWu-iTnFcZIjHxCoTS3-Qk5aYFHPNVSjm5CPWfyb3EzppgNuNFsZaG8hnNvGv4S7fLPXKl8o6jAZDtB2w63Cf0Eqtta2ouOxGUBzUW4z7673KuM-bOtXfdC2bgaIz6D4tc8_twkn93x8NVgK-9A5Avp5ZRSt5TValSvTXL9PG_079ELS3Sr7ocYNRR6BhFy1AXwRJUDSTn5EDHJca22huatZQCFTk2fCzyHtdyjf3CEzxNhj37sbdfly3T4jnApZ-8102wpSCBqHCUC0Vtoq4EwYzEjHvKiOlZlYQUVgKoeY8TXWhVAGhyijHx6C5WC7sCYi4thjCghokFVEZltTQVAqZpYwbjfgpaPkVT98rg4xpvdizv4evwV5_nA-nw8Ho4Rzso9BfwvNDLkCz_FjZS4fypboKwf0GiM6hBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+First+RSI%2FISM+International+Conference+on+Robotics+and+Mechatronics+%28ICRoM%29&rft.atitle=V94.2+gas+turbine+identification+using+neural+network&rft.au=Yari%2C+M.&rft.au=Aliyari+Shoorehdeli%2C+Mahdi&rft.au=Yousefi%2C+I.&rft.date=2013-02-01&rft.pub=IEEE&rft.isbn=9781467358095&rft.spage=523&rft.epage=529&rft_id=info:doi/10.1109%2FICRoM.2013.6510160&rft.externalDocID=6510160 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467358095/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467358095/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467358095/sc.gif&client=summon&freeimage=true |