V94.2 gas turbine identification using neural network

This paper presents the identification of V94.2 gas turbine. This turbine is built by Siemens. It has 162.1 MW nominal power and 50 Hz nominal frequency and is located at Kermanshah power plant, Kermanshah city of Iran. The stored data from turbine include fuel pressure valve angle and IGV 1 angle a...

Full description

Saved in:
Bibliographic Details
Published in2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM) pp. 523 - 529
Main Authors Yari, M., Aliyari Shoorehdeli, Mahdi, Yousefi, I.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.02.2013
Subjects
Online AccessGet full text
ISBN1467358096
9781467358095
DOI10.1109/ICRoM.2013.6510160

Cover

Abstract This paper presents the identification of V94.2 gas turbine. This turbine is built by Siemens. It has 162.1 MW nominal power and 50 Hz nominal frequency and is located at Kermanshah power plant, Kermanshah city of Iran. The stored data from turbine include fuel pressure valve angle and IGV 1 angle as inputs and compressor output pressure, compressor output temperature, fuel pressure, turbine output power and turbine output temperature as outputs. To simplify identification process, the system turns into MISO 2 systems to the number of outputs, and then correlation analysis is used to examine the dependence of the outputs to each input and other outputs. For turbine identification, dynamic linear models are estimated and then Feedforward neural network with one hidden layer is trained. The result shows dynamic linear models have poor performance in comparison with Feedforward neural network with one hidden layer. The neural network is able to identify a predictor model with fitness over 96% for outputs of V94.2 gas turbine.
AbstractList This paper presents the identification of V94.2 gas turbine. This turbine is built by Siemens. It has 162.1 MW nominal power and 50 Hz nominal frequency and is located at Kermanshah power plant, Kermanshah city of Iran. The stored data from turbine include fuel pressure valve angle and IGV 1 angle as inputs and compressor output pressure, compressor output temperature, fuel pressure, turbine output power and turbine output temperature as outputs. To simplify identification process, the system turns into MISO 2 systems to the number of outputs, and then correlation analysis is used to examine the dependence of the outputs to each input and other outputs. For turbine identification, dynamic linear models are estimated and then Feedforward neural network with one hidden layer is trained. The result shows dynamic linear models have poor performance in comparison with Feedforward neural network with one hidden layer. The neural network is able to identify a predictor model with fitness over 96% for outputs of V94.2 gas turbine.
Author Yari, M.
Aliyari Shoorehdeli, Mahdi
Yousefi, I.
Author_xml – sequence: 1
  givenname: M.
  surname: Yari
  fullname: Yari, M.
  email: mostafayari@ee.kntu.ac.ir
  organization: Electr. Eng. Fac., K.N.Toosi Univ. of Technol., Tehran, Iran
– sequence: 2
  givenname: Mahdi
  surname: Aliyari Shoorehdeli
  fullname: Aliyari Shoorehdeli, Mahdi
  email: aliyari@eetd.kntu.ac.ir
  organization: Electr. Eng. Fac., K.N.Toosi Univ. of Technol., Tehran, Iran
– sequence: 3
  givenname: I.
  surname: Yousefi
  fullname: Yousefi, I.
  email: Imanyousefi@ieee.org
  organization: MAPNA Electr. & Control Eng. & Manuf. Co.- MECO, Karaj, Iran
BookMark eNo9j1FLwzAUhSMq6Ob-gL7kD7TeJM1t8yhF52BjIEN8G0l7M6IzlaZF_PcWHD59nIfzcc6MXcQuEmO3AnIhwNyv6pduk0sQKkctQCCcsZkosFS6EvB2_h_A4BVbpPQOAFMTjVbXTL-aIpf8YBMfxt6FSDy0FIfgQ2OH0EU-phAPPNLY2-OE4bvrP27YpbfHRIsT52z39Lirn7P1drmqH9ZZMDBkvpK6qNA5aKX0rW6sU-QKRIWtldNYo61tkExhPGmApiyFaLxzHsBVulRzdvenDUS0_-rDp-1_9qeX6hcyq0eR
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICRoM.2013.6510160
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 146735810X
1467358118
9781467358118
9781467358101
EndPage 529
ExternalDocumentID 6510160
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-f825486bb0d22fd5cab3eb46636da265195aac6e949fe500c7711cfbbf00b8573
IEDL.DBID RIE
ISBN 1467358096
9781467358095
IngestDate Wed Aug 27 03:22:53 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-f825486bb0d22fd5cab3eb46636da265195aac6e949fe500c7711cfbbf00b8573
PageCount 7
ParticipantIDs ieee_primary_6510160
PublicationCentury 2000
PublicationDate 2013-Feb.
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-Feb.
PublicationDecade 2010
PublicationTitle 2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM)
PublicationTitleAbbrev ICRoM
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106953
Score 1.565306
Snippet This paper presents the identification of V94.2 gas turbine. This turbine is built by Siemens. It has 162.1 MW nominal power and 50 Hz nominal frequency and is...
SourceID ieee
SourceType Publisher
StartPage 523
SubjectTerms Computational modeling
gas turbine
Heating
linear model
MATLAB
neural network
Neural networks
nonlinear model
system identification
Turbines
Title V94.2 gas turbine identification using neural network
URI https://ieeexplore.ieee.org/document/6510160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7dbTbZJJtzsVShIlKlt5LHbClKK3Z78debZLctigdPeRxCXjCZyfd9g9ANgaCizllSFlQmORiX6PCQ05C7jEkrTQzmjB_F6CV_mPJpC93uuDAAEMFnkIZq_Mt3K7sJobK-4FEQrY3a_prVXK19PMX7NoqzyN0SMnzu1bJ9QdKpafMtaYao_v3geTUOyC6WNqP-SK8SrcvwEI2386pBJW_ppjKp_fol2fjfiR-h3p7Hh592FuoYtWDZRfxV5SnFc73G3tx4xxjwwjWYoXhMOGDh5zgoXep3X0SceA9NhneTwShpkickC0WqsPXeFxHGEEdp6bjVhoHJ_ftCOE1F0JTR2gpQuSqBE2KlzDJbGlMSYgou2QnqLFdLOEVYWmCElNxRbXJTMM0dz7TSRSaks1SeoW5Y8eyjlseYNYs9_7v7Ah3QmFEiIEIuUaf63MCVt-uVuY4H-g0OXp24
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKGWAC1CLeZGAkqeNnPFdULTQVQgV1q_xKVYFaBOnC12M7aSsQA1MSD5HtOxzf63POBeAGWu-iTnFcZIjHxCoTS3-Qk5aYFHPNVSjm5CPWfyb3EzppgNuNFsZaG8hnNvGv4S7fLPXKl8o6jAZDtB2w63Cf0Eqtta2ouOxGUBzUW4z7673KuM-bOtXfdC2bgaIz6D4tc8_twkn93x8NVgK-9A5Avp5ZRSt5TValSvTXL9PG_079ELS3Sr7ocYNRR6BhFy1AXwRJUDSTn5EDHJca22huatZQCFTk2fCzyHtdyjf3CEzxNhj37sbdfly3T4jnApZ-8102wpSCBqHCUC0Vtoq4EwYzEjHvKiOlZlYQUVgKoeY8TXWhVAGhyijHx6C5WC7sCYi4thjCghokFVEZltTQVAqZpYwbjfgpaPkVT98rg4xpvdizv4evwV5_nA-nw8Ho4Rzso9BfwvNDLkCz_FjZS4fypboKwf0GiM6hBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+First+RSI%2FISM+International+Conference+on+Robotics+and+Mechatronics+%28ICRoM%29&rft.atitle=V94.2+gas+turbine+identification+using+neural+network&rft.au=Yari%2C+M.&rft.au=Aliyari+Shoorehdeli%2C+Mahdi&rft.au=Yousefi%2C+I.&rft.date=2013-02-01&rft.pub=IEEE&rft.isbn=9781467358095&rft.spage=523&rft.epage=529&rft_id=info:doi/10.1109%2FICRoM.2013.6510160&rft.externalDocID=6510160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467358095/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467358095/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467358095/sc.gif&client=summon&freeimage=true