Dynamic clustering in wireless sensor network for target tracking based on the fisher information of modified Kalman filter

In order to reduce the whole network energy consumption of wireless sensor network and select the most suitable nodes to participate in target tracking, a dynamic clustering method is proposed using an improved Kalman filter which based on Fisher information matrix in target tracking. With the basis...

Full description

Saved in:
Bibliographic Details
Published in2016 3rd International Conference on Systems and Informatics (ICSAI) pp. 696 - 700
Main Authors Feng Wang, Xuemei Bai, Bin Guo, Chen Liu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to reduce the whole network energy consumption of wireless sensor network and select the most suitable nodes to participate in target tracking, a dynamic clustering method is proposed using an improved Kalman filter which based on Fisher information matrix in target tracking. With the basis of using of information criteria as the selection criterion of nodes in target tracking, the node residual energy is joined as a selection criteria about voting cluster-head nodes and carrying on the dynamic clustering in this network. At the same time, it can describe the restructuring of dynamic cluster and switch of the cluster head. Cluster head receive the estimations of target from their cluster member nodes, then, it uses the modified Kalman filter (KF) based on Fisher information matrix for filtering in target tracking. Simulation of this method comparing with clustering controlling of activated radius and non-clustering information matrix filter, results show that the proposed method can effectively control the number of the trace nodes, at the same time, improving the tracking precision.
AbstractList In order to reduce the whole network energy consumption of wireless sensor network and select the most suitable nodes to participate in target tracking, a dynamic clustering method is proposed using an improved Kalman filter which based on Fisher information matrix in target tracking. With the basis of using of information criteria as the selection criterion of nodes in target tracking, the node residual energy is joined as a selection criteria about voting cluster-head nodes and carrying on the dynamic clustering in this network. At the same time, it can describe the restructuring of dynamic cluster and switch of the cluster head. Cluster head receive the estimations of target from their cluster member nodes, then, it uses the modified Kalman filter (KF) based on Fisher information matrix for filtering in target tracking. Simulation of this method comparing with clustering controlling of activated radius and non-clustering information matrix filter, results show that the proposed method can effectively control the number of the trace nodes, at the same time, improving the tracking precision.
Author Chen Liu
Feng Wang
Bin Guo
Xuemei Bai
Author_xml – sequence: 1
  surname: Feng Wang
  fullname: Feng Wang
  organization: Changchun Univ. of Sci. & Technol., Changchun, China
– sequence: 2
  surname: Xuemei Bai
  fullname: Xuemei Bai
  organization: Changchun Univ. of Sci. & Technol., Changchun, China
– sequence: 3
  surname: Bin Guo
  fullname: Bin Guo
  organization: Changchun Univ. of Sci. & Technol., Changchun, China
– sequence: 4
  surname: Chen Liu
  fullname: Chen Liu
  organization: Changchun Univ. of Sci. & Technol., Changchun, China
BookMark eNotkMtOwzAQRY0EC1r4Adj4BxJsB8fJsgqviEos6L6aOOPWamIj26iq-HmM6Gqujo7ulWZBLp13SMgdZyXnrH3ou89VXwrG61I1mTyKC7LgkrVMSsHlNfl5OjmYraZ6-o4Jg3U7ah092oATxkgjuugDdZiOPhyoyTlB2GGiKYA-_OkDRBypdzTtkRob9xhyRTZnSDZjb-jsR2tstt5hmsFla8pbN-TKwBTx9nyXZPPyvOneivXHa9-t1oVtWSqMAq6kMVzophqYEG0mrJU1jgBMqxoNH0UlYWgbrjQOUg6Ki0FI4Lo2ulqS-_9ai4jbr2BnCKft-R3VL7QqXP8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSAI.2016.7811042
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509055215
9781509055210
EndPage 700
ExternalDocumentID 7811042
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-f7a175ff12c83b0229f7a0956edaa0c76ef1d235ab9817ceb55b712b25a1c6fc3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:27 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-f7a175ff12c83b0229f7a0956edaa0c76ef1d235ab9817ceb55b712b25a1c6fc3
PageCount 5
ParticipantIDs ieee_primary_7811042
PublicationCentury 2000
PublicationDate 2016-Nov.
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-Nov.
PublicationDecade 2010
PublicationTitle 2016 3rd International Conference on Systems and Informatics (ICSAI)
PublicationTitleAbbrev ICSAI
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7045505
Snippet In order to reduce the whole network energy consumption of wireless sensor network and select the most suitable nodes to participate in target tracking, a...
SourceID ieee
SourceType Publisher
StartPage 696
SubjectTerms dynamic clustering
Energy consumption
Fisher information matrix
Kalman filters
Mathematical model
Position measurement
Target tracking
wireless sensor
Wireless sensor networks
Title Dynamic clustering in wireless sensor network for target tracking based on the fisher information of modified Kalman filter
URI https://ieeexplore.ieee.org/document/7811042
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ08qm_ibd_Bou6Y1bXOU6diUieCE3UaSvsBwa2V2F_3nfWm7ieLBW0kDLXkh70vyfd9j7FJEAWpCbV6Upe60SlhPSoGeDG2cWNSaCydOHj_Gw5fr-6mYttjVVguDiBX5DH33WN3lZ4VZu6OynlNF0iTbYTu0cau1WhsdTCB7o_7zzciRtWK_6fijYkqVMAZ7bLz5VM0TefXXpfbNxy8Xxv_-yz7rfkvz4GmbdA5YC_MO-7yt68qDWayd8QG9gXkOzoZ4QSsZvNNetVhBXlO-gXAq1AxwKFfKuMNycNksgyIHAoRgK6I8NKaqLnRQWFgW2dwSYoUHtViqnHq5m_YumwzuJv2h11RV8OYyKD2bKEIM1vLQpJGmDC6pxbkRYqZUYJIYLc_CSCgtU54Y1ELohIc6FIqb2JrokLXzIscjBoInqZaog4wjrbeEtATBK0OIBmUYq-iYddy4zd5q34xZM2Qnfzefsl0Xu1rnd8ba5WqN55TwS31RRfoLF9ivyg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-uYGRpHGCk3hEhaqlH0KiSN0q27GlijZBJVngz3NOQhGIgS1yLCXyRb6X83vvCLligaclojYnSGJbrWLG4Zxph_smjIyWkjIrTh5Pwv7zzcOMzRrkeqOF0VqX5DPt2svyLD_JVGFLZR2risSPbItsY95ntFJrfSlhPN4ZdJ9uB5auFbr11B89U8qU0dsj46-HVUyRF7fIpavef_kw_vdt9kn7W5wHj5u0c0AaOm2Rj7uqszyoZWGtD_AOLFKwRsRL3MvgDf9WszWkFekbEKlCxQGHfC2ULZeDzWcJZCkgJARTUuWhtlW1wYPMwCpLFgYxKwzFciVSnGXP2ttk2rufdvtO3VfBWXAvd0wkEDMYQ30VBxJzOMcR60eoEyE8FYXa0MQPmJA8ppHSkjEZUV_6TFAVGhUckmaapfqIAKNRLLmWXkI17riItRgCLIWYRnM_FMExadl1m79WzhnzeslO_h6-JDv96Xg0Hw0mw1Oya-NYqf7OSDNfF_oc038uL8qofwJs6bMT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+3rd+International+Conference+on+Systems+and+Informatics+%28ICSAI%29&rft.atitle=Dynamic+clustering+in+wireless+sensor+network+for+target+tracking+based+on+the+fisher+information+of+modified+Kalman+filter&rft.au=Feng+Wang&rft.au=Xuemei+Bai&rft.au=Bin+Guo&rft.au=Chen+Liu&rft.date=2016-11-01&rft.pub=IEEE&rft.spage=696&rft.epage=700&rft_id=info:doi/10.1109%2FICSAI.2016.7811042&rft.externalDocID=7811042