Numerical blood flow simulation with predefined artery movement

In this study, the blood flow in human arteries is modelled. Three dimensional artery geometry is used as the model domain. The geometric model is generated using several parameters of arteries such as radius, length and curvature. After the geometry is determined, blood flow and wall movement model...

Full description

Saved in:
Bibliographic Details
Published in2012 5th International Conference on Biomedical Engineering and Informatics pp. 654 - 658
Main Authors Piskin, Senol, Celebi, M. Serdar
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2012
Online AccessGet full text

Cover

Loading…
Abstract In this study, the blood flow in human arteries is modelled. Three dimensional artery geometry is used as the model domain. The geometric model is generated using several parameters of arteries such as radius, length and curvature. After the geometry is determined, blood flow and wall movement models are constructed. For blood flow, Navier-Stokes equations are solved under the assumptions of Newtonian, incompressible flow and constant viscosity. For artery movement, elastic, homogeneous and isotropic material assumptions are implemented. Blood flow and artery movement models are coupled and solved together. The average pressure value acquired from flow model is set as the loading condition of artery movement. The displacement of artery is used to produce new geometry of flow model for the next time step. At the entrance of the artery, Womersley velocity profile is used. This profile is generated using the flow rate data obtained by experimental studies. Thus, the mechanical properties of blood flow such as velocity profiles, wall shear stress and pressure distribution in arteries are investigated. Initial results reveal that that blood flow - artery wall movement coupling model allows to relate the development of vortices, low wall shear stress zones and others to the cardiovascular diseases.
AbstractList In this study, the blood flow in human arteries is modelled. Three dimensional artery geometry is used as the model domain. The geometric model is generated using several parameters of arteries such as radius, length and curvature. After the geometry is determined, blood flow and wall movement models are constructed. For blood flow, Navier-Stokes equations are solved under the assumptions of Newtonian, incompressible flow and constant viscosity. For artery movement, elastic, homogeneous and isotropic material assumptions are implemented. Blood flow and artery movement models are coupled and solved together. The average pressure value acquired from flow model is set as the loading condition of artery movement. The displacement of artery is used to produce new geometry of flow model for the next time step. At the entrance of the artery, Womersley velocity profile is used. This profile is generated using the flow rate data obtained by experimental studies. Thus, the mechanical properties of blood flow such as velocity profiles, wall shear stress and pressure distribution in arteries are investigated. Initial results reveal that that blood flow - artery wall movement coupling model allows to relate the development of vortices, low wall shear stress zones and others to the cardiovascular diseases.
Author Celebi, M. Serdar
Piskin, Senol
Author_xml – sequence: 1
  givenname: Senol
  surname: Piskin
  fullname: Piskin, Senol
  email: senol.piskin@itu.edu.tr
  organization: Comput. Sci. & Eng. Dept., Istanbul Tech. Univ., Istanbul, Turkey
– sequence: 2
  givenname: M. Serdar
  surname: Celebi
  fullname: Celebi, M. Serdar
  organization: Comput. Sci. & Eng. Dept., Istanbul Tech. Univ., Istanbul, Turkey
BookMark eNo1j8tOwzAURI0ACVryAYiNfyDBr8TOCkFVoFKBTffVtXMtjJK4clKq_n0jUVajWZyjmRm56mOPhNxzVnDO6seXj-WqEIyLoiq5ZLK-IDOuKi05N0pfkqzW5r9LdkOyYfhhjE1sNeG35Olz32EKDlpq2xgb6tt4oEPo9i2MIfb0EMZvukvYoA89NhTSiOlIu_iLHfbjHbn20A6YnXNONq_LzeI9X3-9rRbP6zzUbMy9FlKxEoRABVbJxgNvKqHQODONU8Y6z51iYMCDts5xh1ZpYR2WGlwp5-ThTxsQcbtLoYN03J4vyxN-sU0Z
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BMEI.2012.6513039
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès Toulouse INP et ENVT - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467311847
1467311820
9781467311847
9781467311823
EndPage 658
ExternalDocumentID 6513039
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-f723405a22e4ab43dfa1d624e8c846748bcf1c40a8afa7bcc1ceb472bce57ac53
IEDL.DBID RIE
ISBN 9781467311830
1467311839
IngestDate Wed Aug 27 04:32:59 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-f723405a22e4ab43dfa1d624e8c846748bcf1c40a8afa7bcc1ceb472bce57ac53
PageCount 5
ParticipantIDs ieee_primary_6513039
PublicationCentury 2000
PublicationDate 2012-Oct.
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-Oct.
PublicationDecade 2010
PublicationTitle 2012 5th International Conference on Biomedical Engineering and Informatics
PublicationTitleAbbrev BMEI
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106109
Score 1.5037577
Snippet In this study, the blood flow in human arteries is modelled. Three dimensional artery geometry is used as the model domain. The geometric model is generated...
SourceID ieee
SourceType Publisher
StartPage 654
Title Numerical blood flow simulation with predefined artery movement
URI https://ieeexplore.ieee.org/document/6513039
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp5UNvGbHDzars1X25OgbKiw4WHCbiMfrzDc1jFbRP96k7TbUDx4S0IJSUryfu-933sPoRtjtQqiIh1QRfOAAUkDSWIWpMCl4NRYTOs8uqOxeHxlz1M-baHbXSwMAHjyGYSu6X35ptCVM5X1BXcvbtZGbau41bFae3uK022izMduiYTGTvJvUzo1_a1X037Wvx8Nnhyxi4TNpD-qq3jhMjxEo-2yak7JW1iVKtRfvzI2_nfdR6i3D-PDLzsBdYxasOqiu3FVO2kW2JPWcb4oPvD7fNnU8cLOMovXGzCQWwRqsCd9fuJl4TOLlz00GQ4mD49BU0UhmGdRGeQJoRaUSUKAScWoyWVsBGGQ6tRXGlE6jzWLZCpzmSitYw2KJURp4InUnJ6gzqpYwSnCiTAioxZxEGGYiohUJNXGXnDDjYWJ7Ax13d5n6zpPxqzZ9vnfwxfowJ1_TYy7RJ1yU8GVFfCluvZ_9hu6u6HC
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qPehJpRXf7sGjSZN9JTkJSkurTfFQobeyr0CxbUpNEP317m5Si-LB22YJYZdh8307880MADfK3CqQCKSHBc48olHscRQSL9aUM4qV4bQ2opuOWP-FPE7opAFuv3NhtNZOfKZ9O3SxfJXL0rrKOozaP26yA3YN7lNUZWttPSr2dhMkLnuLRTi02L8p6lQ_b-Ka5rXOfdodWGkX8uvP_uiv4uCldwDSzcIqVcmrXxbCl5-_ajb-d-WHoL1N5IPP3xB1BBp62QJ3o7IK08yhk63DbJ6_w7fZou7kBa1vFq7WWunMcFAFnezzAy5yV1u8aINxrzt-6Ht1HwVvlgSFl0UIG1rGEdKEC4JVxkPFENGxjF2vESGzUJKAxzzjkZAylFqQCAmpacQlxcegucyX-gTAiCmWYMM5EFNEBIgLFEtljriiyhBFcgpadu_TVVUpY1pv--zv6Wuw1x-nw-lwMHo6B_vWFpVM7gI0i3WpLw3cF-LKWfkLYvmlDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+5th+International+Conference+on+Biomedical+Engineering+and+Informatics&rft.atitle=Numerical+blood+flow+simulation+with+predefined+artery+movement&rft.au=Piskin%2C+Senol&rft.au=Celebi%2C+M.+Serdar&rft.date=2012-10-01&rft.pub=IEEE&rft.isbn=9781467311830&rft.spage=654&rft.epage=658&rft_id=info:doi/10.1109%2FBMEI.2012.6513039&rft.externalDocID=6513039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467311830/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467311830/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467311830/sc.gif&client=summon&freeimage=true