A SVR based forecasting approach for real estate price prediction

The support vector machine (SVM), proposed by Vapnik (1995), has been successfully applied to classification, cluster, and forecast. This study proposes support vector regression (SVR) to forecast real estate prices in China. The aim of this paper is to examine the feasibility of SVR in real estate...

Full description

Saved in:
Bibliographic Details
Published in2009 International Conference on Machine Learning and Cybernetics Vol. 2; pp. 970 - 974
Main Authors Da-Ying Li, Wei Xu, Hong Zhao, Rong-Qiu Chen
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2009
Subjects
Online AccessGet full text
ISBN9781424437023
1424437024
ISSN2160-133X
DOI10.1109/ICMLC.2009.5212389

Cover

Loading…
Abstract The support vector machine (SVM), proposed by Vapnik (1995), has been successfully applied to classification, cluster, and forecast. This study proposes support vector regression (SVR) to forecast real estate prices in China. The aim of this paper is to examine the feasibility of SVR in real estate price prediction. To achieve the aim, five indicators are selected as the input variables and real estate price is used as output variable of the SVR. The quarterly data during 1998-2008 are employed as the data set to construct the SVR model. With the scenarios, real estate prices in future are forecasted and analyzed. The forecasting performance of SVR model was also compared with BPNN model. The experimental results demonstrate that based on the mean absolute error (MAE), the mean absolute percentage error (MAPE) and the root mean squared error (RMSE), the SVR model outperforms the BPNN model and the SVR based approach was an efficient tool to forecast real estate prices.
AbstractList The support vector machine (SVM), proposed by Vapnik (1995), has been successfully applied to classification, cluster, and forecast. This study proposes support vector regression (SVR) to forecast real estate prices in China. The aim of this paper is to examine the feasibility of SVR in real estate price prediction. To achieve the aim, five indicators are selected as the input variables and real estate price is used as output variable of the SVR. The quarterly data during 1998-2008 are employed as the data set to construct the SVR model. With the scenarios, real estate prices in future are forecasted and analyzed. The forecasting performance of SVR model was also compared with BPNN model. The experimental results demonstrate that based on the mean absolute error (MAE), the mean absolute percentage error (MAPE) and the root mean squared error (RMSE), the SVR model outperforms the BPNN model and the SVR based approach was an efficient tool to forecast real estate prices.
Author Hong Zhao
Da-Ying Li
Wei Xu
Rong-Qiu Chen
Author_xml – sequence: 1
  surname: Da-Ying Li
  fullname: Da-Ying Li
  organization: Sch. of Manage., Huazhong Univ. of Sci. & Technol., Wuhan, China
– sequence: 2
  surname: Wei Xu
  fullname: Wei Xu
– sequence: 3
  surname: Hong Zhao
  fullname: Hong Zhao
– sequence: 4
  surname: Rong-Qiu Chen
  fullname: Rong-Qiu Chen
  organization: Sch. of Manage., Huazhong Univ. of Sci. & Technol., Wuhan, China
BookMark eNo1UE1Lw0AUXLEF25o_oJf9A4m7-zb7cQxBayEiaBFvZbP7ViM1CUku_ntTrO8wwwzMMLw1WbRdi4TccJZxzuzdrnyqykwwZrNccAHGXpA1l0JK0AzEJUmsNv9awIKsBFcs5QDvS7Kec8ZybnNxRZJx_GLzyVxoBStSFPT17YXWbsRAYzegd-PUtB_U9f3QOf95MumA7khxnNyEtB8af0IMjZ-arr0my-iOIyZn3pD9w_2-fEyr5-2uLKq0sWxKozTKc2_r3AephQzMRa-VD4ahCKZmuuZoDcvzAAaiFLUD5erIFdo4T4cNuf2rbRDxMI_4dsPP4fwN-AVrQlBj
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2009.5212389
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424437032
9781424437030
EndPage 974
ExternalDocumentID 5212389
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-f486c1c9b5cd4724d0afc76cd80e2d8b07b1e98055d383f42ba36abf16e9f1953
IEDL.DBID RIE
ISBN 9781424437023
1424437024
ISSN 2160-133X
IngestDate Wed Aug 27 02:21:14 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008911952
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-f486c1c9b5cd4724d0afc76cd80e2d8b07b1e98055d383f42ba36abf16e9f1953
PageCount 5
ParticipantIDs ieee_primary_5212389
PublicationCentury 2000
PublicationDate 2009-July
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-July
PublicationDecade 2000
PublicationTitle 2009 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452763
ssj0000744891
Score 1.4601417
Snippet The support vector machine (SVM), proposed by Vapnik (1995), has been successfully applied to classification, cluster, and forecast. This study proposes...
SourceID ieee
SourceType Publisher
StartPage 970
SubjectTerms Cybernetics
Economic forecasting
Economic indicators
Employment
forecast
Loans and mortgages
Machine learning
Macroeconomics
Predictive models
real estate price
Support vector machine (SVM)
Support vector machines
Technology forecasting
Title A SVR based forecasting approach for real estate price prediction
URI https://ieeexplore.ieee.org/document/5212389
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhJ66SOH2NVURVEEYKCulV-SgjUVpAu_HrOTlIEYmCxYi9JnMfdd3ffdwhdKLDBLKATTr1IqLcqUUzDIOHnJ1iuqAuhgekdmzzRm3k-b6DLLRfGOReLz1wvHMZcvl2ZTQiV9SPPVMgmagJwK7la23hKkAbnlZRUnHMAHrFhXpYykgAUm9e8rgEHw1TLPVXzQU2oIbJ_PZrejkopy-qMP1qvRMszbqNpfc1lwclrb1Ponvn8Jef435vaRd1vjh--31qvPdRwy33Urps84Oqb76DhED8-P-Bg7SwGD9cZ9RFKpXGtRh4WMbieb9hFdhJeB50iGEMKKDz2LpqNr2ajSVL1XUheJCkSTwUzqZE6N5byjFqivOHMWEFcZoUmXKdOCpLnFuCtp5lWA6a0T5mTPmTlDlBruVq6Q4S9NCzPPXhNCjwXJxRRwmSUOUM1wGF2hDphQxbrUlljUe3F8d_LJ2inzOWEYtlT1CreN-4MXIJCn8d34QtJlq12
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG4QD3pCBePbHjw66EbbtUdCJKCMGEXDjfSZGA0QHRf_ettuw2g8eGnWXrZ1j-_3-r4fAFfCYTD13kmKLYuw1SISVLqBu58fo0Rg40MD2YQOn_DtjMxq4HrDhTHGhOIz0_aHIZevl2rtQ2WdwDNlfAtsO9wnccHW2kRUvDh4WopJhXnqXI_QMi-JKYqcMzarmF3d1EFTJfhUzrsVpQbxzqifjfuFmGV5zh_NVwL2DBogq666KDl5ba9z2VafvwQd_3tbe6D1zfKD9xv82gc1szgAjarNAyy_-ibo9eDj8wP0eKehs3GNEh--WBpWeuR-ETrj8w2awE-CK69U5EafBPIPvgWmg5tpfxiVnReiF47yyGJGVay4JErjNMEaCatSqjRDJtFMolTGhjNEiHYOrsWJFF0qpI2p4dbn5Q5BfbFcmCMALVeUEOvsJuFsF8MEEkwlmBqFpXOI6TFo-g2ZrwptjXm5Fyd_L1-CneE0G8_Ho8ndKdgtMju-dPYM1PP3tTl3BkIuL8J78QWO9bC_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=A+SVR+based+forecasting+approach+for+real+estate+price+prediction&rft.au=Da-Ying+Li&rft.au=Wei+Xu&rft.au=Hong+Zhao&rft.au=Rong-Qiu+Chen&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=2&rft.spage=970&rft.epage=974&rft_id=info:doi/10.1109%2FICMLC.2009.5212389&rft.externalDocID=5212389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon