A SVR based forecasting approach for real estate price prediction
The support vector machine (SVM), proposed by Vapnik (1995), has been successfully applied to classification, cluster, and forecast. This study proposes support vector regression (SVR) to forecast real estate prices in China. The aim of this paper is to examine the feasibility of SVR in real estate...
Saved in:
Published in | 2009 International Conference on Machine Learning and Cybernetics Vol. 2; pp. 970 - 974 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2009
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
DOI | 10.1109/ICMLC.2009.5212389 |
Cover
Loading…
Abstract | The support vector machine (SVM), proposed by Vapnik (1995), has been successfully applied to classification, cluster, and forecast. This study proposes support vector regression (SVR) to forecast real estate prices in China. The aim of this paper is to examine the feasibility of SVR in real estate price prediction. To achieve the aim, five indicators are selected as the input variables and real estate price is used as output variable of the SVR. The quarterly data during 1998-2008 are employed as the data set to construct the SVR model. With the scenarios, real estate prices in future are forecasted and analyzed. The forecasting performance of SVR model was also compared with BPNN model. The experimental results demonstrate that based on the mean absolute error (MAE), the mean absolute percentage error (MAPE) and the root mean squared error (RMSE), the SVR model outperforms the BPNN model and the SVR based approach was an efficient tool to forecast real estate prices. |
---|---|
AbstractList | The support vector machine (SVM), proposed by Vapnik (1995), has been successfully applied to classification, cluster, and forecast. This study proposes support vector regression (SVR) to forecast real estate prices in China. The aim of this paper is to examine the feasibility of SVR in real estate price prediction. To achieve the aim, five indicators are selected as the input variables and real estate price is used as output variable of the SVR. The quarterly data during 1998-2008 are employed as the data set to construct the SVR model. With the scenarios, real estate prices in future are forecasted and analyzed. The forecasting performance of SVR model was also compared with BPNN model. The experimental results demonstrate that based on the mean absolute error (MAE), the mean absolute percentage error (MAPE) and the root mean squared error (RMSE), the SVR model outperforms the BPNN model and the SVR based approach was an efficient tool to forecast real estate prices. |
Author | Hong Zhao Da-Ying Li Wei Xu Rong-Qiu Chen |
Author_xml | – sequence: 1 surname: Da-Ying Li fullname: Da-Ying Li organization: Sch. of Manage., Huazhong Univ. of Sci. & Technol., Wuhan, China – sequence: 2 surname: Wei Xu fullname: Wei Xu – sequence: 3 surname: Hong Zhao fullname: Hong Zhao – sequence: 4 surname: Rong-Qiu Chen fullname: Rong-Qiu Chen organization: Sch. of Manage., Huazhong Univ. of Sci. & Technol., Wuhan, China |
BookMark | eNo1UE1Lw0AUXLEF25o_oJf9A4m7-zb7cQxBayEiaBFvZbP7ViM1CUku_ntTrO8wwwzMMLw1WbRdi4TccJZxzuzdrnyqykwwZrNccAHGXpA1l0JK0AzEJUmsNv9awIKsBFcs5QDvS7Kec8ZybnNxRZJx_GLzyVxoBStSFPT17YXWbsRAYzegd-PUtB_U9f3QOf95MumA7khxnNyEtB8af0IMjZ-arr0my-iOIyZn3pD9w_2-fEyr5-2uLKq0sWxKozTKc2_r3AephQzMRa-VD4ahCKZmuuZoDcvzAAaiFLUD5erIFdo4T4cNuf2rbRDxMI_4dsPP4fwN-AVrQlBj |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2009.5212389 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1424437032 9781424437030 |
EndPage | 974 |
ExternalDocumentID | 5212389 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-f486c1c9b5cd4724d0afc76cd80e2d8b07b1e98055d383f42ba36abf16e9f1953 |
IEDL.DBID | RIE |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 02:21:14 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2008911952 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-f486c1c9b5cd4724d0afc76cd80e2d8b07b1e98055d383f42ba36abf16e9f1953 |
PageCount | 5 |
ParticipantIDs | ieee_primary_5212389 |
PublicationCentury | 2000 |
PublicationDate | 2009-July |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-July |
PublicationDecade | 2000 |
PublicationTitle | 2009 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000452763 ssj0000744891 |
Score | 1.4601417 |
Snippet | The support vector machine (SVM), proposed by Vapnik (1995), has been successfully applied to classification, cluster, and forecast. This study proposes... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 970 |
SubjectTerms | Cybernetics Economic forecasting Economic indicators Employment forecast Loans and mortgages Machine learning Macroeconomics Predictive models real estate price Support vector machine (SVM) Support vector machines Technology forecasting |
Title | A SVR based forecasting approach for real estate price prediction |
URI | https://ieeexplore.ieee.org/document/5212389 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhJ66SOH2NVURVEEYKCulV-SgjUVpAu_HrOTlIEYmCxYi9JnMfdd3ffdwhdKLDBLKATTr1IqLcqUUzDIOHnJ1iuqAuhgekdmzzRm3k-b6DLLRfGOReLz1wvHMZcvl2ZTQiV9SPPVMgmagJwK7la23hKkAbnlZRUnHMAHrFhXpYykgAUm9e8rgEHw1TLPVXzQU2oIbJ_PZrejkopy-qMP1qvRMszbqNpfc1lwclrb1Ponvn8Jef435vaRd1vjh--31qvPdRwy33Urps84Oqb76DhED8-P-Bg7SwGD9cZ9RFKpXGtRh4WMbieb9hFdhJeB50iGEMKKDz2LpqNr2ajSVL1XUheJCkSTwUzqZE6N5byjFqivOHMWEFcZoUmXKdOCpLnFuCtp5lWA6a0T5mTPmTlDlBruVq6Q4S9NCzPPXhNCjwXJxRRwmSUOUM1wGF2hDphQxbrUlljUe3F8d_LJ2inzOWEYtlT1CreN-4MXIJCn8d34QtJlq12 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG4QD3pCBePbHjw66EbbtUdCJKCMGEXDjfSZGA0QHRf_ettuw2g8eGnWXrZ1j-_3-r4fAFfCYTD13kmKLYuw1SISVLqBu58fo0Rg40MD2YQOn_DtjMxq4HrDhTHGhOIz0_aHIZevl2rtQ2WdwDNlfAtsO9wnccHW2kRUvDh4WopJhXnqXI_QMi-JKYqcMzarmF3d1EFTJfhUzrsVpQbxzqifjfuFmGV5zh_NVwL2DBogq666KDl5ba9z2VafvwQd_3tbe6D1zfKD9xv82gc1szgAjarNAyy_-ibo9eDj8wP0eKehs3GNEh--WBpWeuR-ETrj8w2awE-CK69U5EafBPIPvgWmg5tpfxiVnReiF47yyGJGVay4JErjNMEaCatSqjRDJtFMolTGhjNEiHYOrsWJFF0qpI2p4dbn5Q5BfbFcmCMALVeUEOvsJuFsF8MEEkwlmBqFpXOI6TFo-g2ZrwptjXm5Fyd_L1-CneE0G8_Ho8ndKdgtMju-dPYM1PP3tTl3BkIuL8J78QWO9bC_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=A+SVR+based+forecasting+approach+for+real+estate+price+prediction&rft.au=Da-Ying+Li&rft.au=Wei+Xu&rft.au=Hong+Zhao&rft.au=Rong-Qiu+Chen&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=2&rft.spage=970&rft.epage=974&rft_id=info:doi/10.1109%2FICMLC.2009.5212389&rft.externalDocID=5212389 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |