A deep residual networks classification algorithm of fetal heart CT images
This paper proposes a deep residual networks classification algorithm of fetal heart CT images. It is difficult to diagnose Fetal Congenital Heart Disease (FCHD) due to medical CT images of fetal heart has much noisy than general natural scenes images and fetal body position is not fixed. These are...
Saved in:
Published in | 2018 IEEE International Conference on Imaging Systems and Techniques (IST) pp. 1 - 4 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2018
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/IST.2018.8577179 |
Cover
Loading…
Abstract | This paper proposes a deep residual networks classification algorithm of fetal heart CT images. It is difficult to diagnose Fetal Congenital Heart Disease (FCHD) due to medical CT images of fetal heart has much noisy than general natural scenes images and fetal body position is not fixed. These are great difficulties for medical experts so they cannot give every subject correct diagnosis. The algorithm in this paper exploits deep residual networks to classify the FCHD CT images and may give higher accuracy and precision than medical experts. The residual networks we proposed are based on ResNet34 [1] and a fully connected (FC) layer is added to the last layer of ResNet34 due to the binary classification for negative or positive of FCHD. This residual networks mechanism achieves superior performance than other baseline deep network for binary classification of FCHD. |
---|---|
AbstractList | This paper proposes a deep residual networks classification algorithm of fetal heart CT images. It is difficult to diagnose Fetal Congenital Heart Disease (FCHD) due to medical CT images of fetal heart has much noisy than general natural scenes images and fetal body position is not fixed. These are great difficulties for medical experts so they cannot give every subject correct diagnosis. The algorithm in this paper exploits deep residual networks to classify the FCHD CT images and may give higher accuracy and precision than medical experts. The residual networks we proposed are based on ResNet34 [1] and a fully connected (FC) layer is added to the last layer of ResNet34 due to the binary classification for negative or positive of FCHD. This residual networks mechanism achieves superior performance than other baseline deep network for binary classification of FCHD. |
Author | Cheng, Qian Gong, Yuxin Lei, Li Zhu, Haogang |
Author_xml | – sequence: 1 givenname: Li surname: Lei fullname: Lei, Li organization: State Key Laboratory of Software Development Environment, Beihang University – sequence: 2 givenname: Haogang surname: Zhu fullname: Zhu, Haogang organization: State Key Laboratory of Software Development Environment, Beihang University – sequence: 3 givenname: Yuxin surname: Gong fullname: Gong, Yuxin organization: State Key Laboratory of Software Development Environment, Beihang University – sequence: 4 givenname: Qian surname: Cheng fullname: Cheng, Qian organization: State Key Laboratory of Software Development Environment, Beihang University |
BookMark | eNotj71qwzAURlVohjbNHuiiF7CrK9myNAbTn5RAh3oP1_JVIurYQVIpffsGmulbDufw3bPbaZ6IsTWIEkDYp-1nV0oBpjR100Bjb9jKNgZqZbTW0tg79r7hA9GZR0ph-MaRT5R_5viVuBsxpeCDwxzmieN4mGPIxxOfPfeUL-iRMGbedjyc8EDpgS08jolW112y7uW5a9-K3cfrtt3simBFLjwg1FZUbtCGlIPae6i1s8OAHjRIY6xTvZQgpdNSGt33lXMoJWIlGuXUkj3-awMR7c_xEo-_--tB9QfQKUnI |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IST.2018.8577179 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781538666289 1538666286 |
EndPage | 4 |
ExternalDocumentID | 8577179 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-f1a15904cd68e3c15ff156c9ddaf1612889c3b22122c62286bb4cca22aa4073c3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:39:18 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-f1a15904cd68e3c15ff156c9ddaf1612889c3b22122c62286bb4cca22aa4073c3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_8577179 |
PublicationCentury | 2000 |
PublicationDate | 2018-Oct. |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-Oct. |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE International Conference on Imaging Systems and Techniques (IST) |
PublicationTitleAbbrev | IST |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.739154 |
Snippet | This paper proposes a deep residual networks classification algorithm of fetal heart CT images. It is difficult to diagnose Fetal Congenital Heart Disease... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | CT images classification deep residual network fetal congenital heart disease Instrumentation and measurement |
Title | A deep residual networks classification algorithm of fetal heart CT images |
URI | https://ieeexplore.ieee.org/document/8577179 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF3anjyptOI3e_DopvnO7lGKpRYqghF6K_sxq0WblDa9-OudTdqK4sHbEgIJM7Dvvd03M4TcKGvAWJBMggUWmyxgMlCC-SZw7agsz4w7h5w8pqOXeDxNpi1yu6-FAYDafAaeW9Z3-abUG3dU1udJhupDtEkbhVtTq7W7efRF_-E5d1Yt7m1f-zEvpYaL4SGZ7D7UuETevU2lPP35qwfjf__kiPS-C_Po0x5yjkkLii4Z31EDsKQonOvKKlo01u411Y4aOy9QHX4qP17L1bx6W9DSUgtIu6mbZ13RQU7nC9xY1j2SD-_zwYhtRySwufArZgOJdMSPtUk5RDpIrEU9poUx0iKVCzkXOlIhwlOo0zDkqVIxpiwMpUQhF-nohHSKsoBTQhUStzQAxHMl4jiLFECKqxRsoixX6ox0XRhmy6YJxmwbgfO_H1-QA5eKxvV2STrVagNXiN6Vuq7T9gXmLZ40 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0gHvSkBozf9uDRXfZ7u0dDJIBATFwTbqQfUyXILoHl4q-33QWMxoO3pmmym07S96Z9bwbgjiuJUiGzGCq0Ahm7FnN5YjnSNeWoFI2luYccjqLua9Afh-Ma3O-8MIhYis_QNsPyLV_mYm2uylo0jHX2kezBfmjMuJVba_v26CSt3ktqxFrU3iz80TGlBIzOEQy3n6p0IjN7XXBbfP6qwvjffzmG5rc1jzzvQOcEapg1oP9AJOKC6NS59FaRrBJ3r4gw5NiogcoAEPbxli-nxfuc5Ioo1MSbmI7WBWmnZDrXR8uqCWnnMW13rU2TBGuaOIWlXKYJiRMIGVH0hRsqpTMykUjJlCZzHqWJ8LmnAcoTkefRiPNAB83zGNOpnC_8U6hneYZnQLimbpGLGtF5EgSxzxEjPYpQhVxRzs-hYbZhsqjKYEw2O3Dx9_QtHHTT4WAy6I2eLuHQhKXSwF1BvViu8VpjecFvyhB-AVYHoXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+International+Conference+on+Imaging+Systems+and+Techniques+%28IST%29&rft.atitle=A+deep+residual+networks+classification+algorithm+of+fetal+heart+CT+images&rft.au=Lei%2C+Li&rft.au=Zhu%2C+Haogang&rft.au=Gong%2C+Yuxin&rft.au=Cheng%2C+Qian&rft.date=2018-10-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FIST.2018.8577179&rft.externalDocID=8577179 |