A deep residual networks classification algorithm of fetal heart CT images

This paper proposes a deep residual networks classification algorithm of fetal heart CT images. It is difficult to diagnose Fetal Congenital Heart Disease (FCHD) due to medical CT images of fetal heart has much noisy than general natural scenes images and fetal body position is not fixed. These are...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE International Conference on Imaging Systems and Techniques (IST) pp. 1 - 4
Main Authors Lei, Li, Zhu, Haogang, Gong, Yuxin, Cheng, Qian
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2018
Subjects
Online AccessGet full text
DOI10.1109/IST.2018.8577179

Cover

Loading…
Abstract This paper proposes a deep residual networks classification algorithm of fetal heart CT images. It is difficult to diagnose Fetal Congenital Heart Disease (FCHD) due to medical CT images of fetal heart has much noisy than general natural scenes images and fetal body position is not fixed. These are great difficulties for medical experts so they cannot give every subject correct diagnosis. The algorithm in this paper exploits deep residual networks to classify the FCHD CT images and may give higher accuracy and precision than medical experts. The residual networks we proposed are based on ResNet34 [1] and a fully connected (FC) layer is added to the last layer of ResNet34 due to the binary classification for negative or positive of FCHD. This residual networks mechanism achieves superior performance than other baseline deep network for binary classification of FCHD.
AbstractList This paper proposes a deep residual networks classification algorithm of fetal heart CT images. It is difficult to diagnose Fetal Congenital Heart Disease (FCHD) due to medical CT images of fetal heart has much noisy than general natural scenes images and fetal body position is not fixed. These are great difficulties for medical experts so they cannot give every subject correct diagnosis. The algorithm in this paper exploits deep residual networks to classify the FCHD CT images and may give higher accuracy and precision than medical experts. The residual networks we proposed are based on ResNet34 [1] and a fully connected (FC) layer is added to the last layer of ResNet34 due to the binary classification for negative or positive of FCHD. This residual networks mechanism achieves superior performance than other baseline deep network for binary classification of FCHD.
Author Cheng, Qian
Gong, Yuxin
Lei, Li
Zhu, Haogang
Author_xml – sequence: 1
  givenname: Li
  surname: Lei
  fullname: Lei, Li
  organization: State Key Laboratory of Software Development Environment, Beihang University
– sequence: 2
  givenname: Haogang
  surname: Zhu
  fullname: Zhu, Haogang
  organization: State Key Laboratory of Software Development Environment, Beihang University
– sequence: 3
  givenname: Yuxin
  surname: Gong
  fullname: Gong, Yuxin
  organization: State Key Laboratory of Software Development Environment, Beihang University
– sequence: 4
  givenname: Qian
  surname: Cheng
  fullname: Cheng, Qian
  organization: State Key Laboratory of Software Development Environment, Beihang University
BookMark eNotj71qwzAURlVohjbNHuiiF7CrK9myNAbTn5RAh3oP1_JVIurYQVIpffsGmulbDufw3bPbaZ6IsTWIEkDYp-1nV0oBpjR100Bjb9jKNgZqZbTW0tg79r7hA9GZR0ph-MaRT5R_5viVuBsxpeCDwxzmieN4mGPIxxOfPfeUL-iRMGbedjyc8EDpgS08jolW112y7uW5a9-K3cfrtt3simBFLjwg1FZUbtCGlIPae6i1s8OAHjRIY6xTvZQgpdNSGt33lXMoJWIlGuXUkj3-awMR7c_xEo-_--tB9QfQKUnI
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IST.2018.8577179
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538666289
1538666286
EndPage 4
ExternalDocumentID 8577179
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-f1a15904cd68e3c15ff156c9ddaf1612889c3b22122c62286bb4cca22aa4073c3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:18 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-f1a15904cd68e3c15ff156c9ddaf1612889c3b22122c62286bb4cca22aa4073c3
PageCount 4
ParticipantIDs ieee_primary_8577179
PublicationCentury 2000
PublicationDate 2018-Oct.
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-Oct.
PublicationDecade 2010
PublicationTitle 2018 IEEE International Conference on Imaging Systems and Techniques (IST)
PublicationTitleAbbrev IST
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.739154
Snippet This paper proposes a deep residual networks classification algorithm of fetal heart CT images. It is difficult to diagnose Fetal Congenital Heart Disease...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms CT images classification
deep residual network
fetal congenital heart disease
Instrumentation and measurement
Title A deep residual networks classification algorithm of fetal heart CT images
URI https://ieeexplore.ieee.org/document/8577179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF3anjyptOI3e_DopvnO7lGKpRYqghF6K_sxq0WblDa9-OudTdqK4sHbEgIJM7Dvvd03M4TcKGvAWJBMggUWmyxgMlCC-SZw7agsz4w7h5w8pqOXeDxNpi1yu6-FAYDafAaeW9Z3-abUG3dU1udJhupDtEkbhVtTq7W7efRF_-E5d1Yt7m1f-zEvpYaL4SGZ7D7UuETevU2lPP35qwfjf__kiPS-C_Po0x5yjkkLii4Z31EDsKQonOvKKlo01u411Y4aOy9QHX4qP17L1bx6W9DSUgtIu6mbZ13RQU7nC9xY1j2SD-_zwYhtRySwufArZgOJdMSPtUk5RDpIrEU9poUx0iKVCzkXOlIhwlOo0zDkqVIxpiwMpUQhF-nohHSKsoBTQhUStzQAxHMl4jiLFECKqxRsoixX6ox0XRhmy6YJxmwbgfO_H1-QA5eKxvV2STrVagNXiN6Vuq7T9gXmLZ40
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0gHvSkBozf9uDRXfZ7u0dDJIBATFwTbqQfUyXILoHl4q-33QWMxoO3pmmym07S96Z9bwbgjiuJUiGzGCq0Ahm7FnN5YjnSNeWoFI2luYccjqLua9Afh-Ma3O-8MIhYis_QNsPyLV_mYm2uylo0jHX2kezBfmjMuJVba_v26CSt3ktqxFrU3iz80TGlBIzOEQy3n6p0IjN7XXBbfP6qwvjffzmG5rc1jzzvQOcEapg1oP9AJOKC6NS59FaRrBJ3r4gw5NiogcoAEPbxli-nxfuc5Ioo1MSbmI7WBWmnZDrXR8uqCWnnMW13rU2TBGuaOIWlXKYJiRMIGVH0hRsqpTMykUjJlCZzHqWJ8LmnAcoTkefRiPNAB83zGNOpnC_8U6hneYZnQLimbpGLGtF5EgSxzxEjPYpQhVxRzs-hYbZhsqjKYEw2O3Dx9_QtHHTT4WAy6I2eLuHQhKXSwF1BvViu8VpjecFvyhB-AVYHoXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+International+Conference+on+Imaging+Systems+and+Techniques+%28IST%29&rft.atitle=A+deep+residual+networks+classification+algorithm+of+fetal+heart+CT+images&rft.au=Lei%2C+Li&rft.au=Zhu%2C+Haogang&rft.au=Gong%2C+Yuxin&rft.au=Cheng%2C+Qian&rft.date=2018-10-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FIST.2018.8577179&rft.externalDocID=8577179