Object retrieval with large vocabularies and fast spatial matching

In this paper, we present a large-scale object retrieval system. The user supplies a query object by selecting a region of a query image, and the system returns a ranked list of images that contain the same object, retrieved from a large corpus. We demonstrate the scalability and performance of our...

Full description

Saved in:
Bibliographic Details
Published in2007 IEEE Conference on Computer Vision and Pattern Recognition pp. 1 - 8
Main Authors Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2007
Subjects
Online AccessGet full text
ISBN9781424411795
1424411793
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2007.383172

Cover

Abstract In this paper, we present a large-scale object retrieval system. The user supplies a query object by selecting a region of a query image, and the system returns a ranked list of images that contain the same object, retrieved from a large corpus. We demonstrate the scalability and performance of our system on a dataset of over 1 million images crawled from the photo-sharing site, Flickr [3], using Oxford landmarks as queries. Building an image-feature vocabulary is a major time and performance bottleneck, due to the size of our dataset. To address this problem we compare different scalable methods for building a vocabulary and introduce a novel quantization method based on randomized trees which we show outperforms the current state-of-the-art on an extensive ground-truth. Our experiments show that the quantization has a major effect on retrieval quality. To further improve query performance, we add an efficient spatial verification stage to re-rank the results returned from our bag-of-words model and show that this consistently improves search quality, though by less of a margin when the visual vocabulary is large. We view this work as a promising step towards much larger, "web-scale " image corpora.
AbstractList In this paper, we present a large-scale object retrieval system. The user supplies a query object by selecting a region of a query image, and the system returns a ranked list of images that contain the same object, retrieved from a large corpus. We demonstrate the scalability and performance of our system on a dataset of over 1 million images crawled from the photo-sharing site, Flickr [3], using Oxford landmarks as queries. Building an image-feature vocabulary is a major time and performance bottleneck, due to the size of our dataset. To address this problem we compare different scalable methods for building a vocabulary and introduce a novel quantization method based on randomized trees which we show outperforms the current state-of-the-art on an extensive ground-truth. Our experiments show that the quantization has a major effect on retrieval quality. To further improve query performance, we add an efficient spatial verification stage to re-rank the results returned from our bag-of-words model and show that this consistently improves search quality, though by less of a margin when the visual vocabulary is large. We view this work as a promising step towards much larger, "web-scale " image corpora.
Author Chum, O.
Zisserman, A.
Isard, M.
Philbin, J.
Sivic, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Philbin
  fullname: Philbin, J.
  organization: Univ. of Oxford, Oxford
– sequence: 2
  givenname: O.
  surname: Chum
  fullname: Chum, O.
  organization: Univ. of Oxford, Oxford
– sequence: 3
  givenname: M.
  surname: Isard
  fullname: Isard, M.
– sequence: 4
  givenname: J.
  surname: Sivic
  fullname: Sivic, J.
– sequence: 5
  givenname: A.
  surname: Zisserman
  fullname: Zisserman, A.
BookMark eNpNjE9Lw0AUxFetYFtzF7zsF0h9m93N7h411D9QqEjxWl42L-2WNC3JWvHbG7AH5zIDv5mZsFF7aImxOwEzIcA9FJ_vH7MMwMyklcJkF2wiVKaUEBbMJRsLyGWaO-GuWOKMPTPj9Ogfu2FJ3-9gkB1m2o7Z07LckY-8o9gFOmHDv0Pc8ga7DfHTwWP5NeRAPce24jX2kfdHjGEo7jH6bWg3t-y6xqan5OxTtnqer4rXdLF8eSseF2lwEFOylbKktVIec8xAZxacUwq9AjJlVXntXI4-r5EGQ4KSrLaIUMlcWymn7P7vNhDR-tiFPXY_a5UZEM7IX4xaUPs
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2007.383172
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1424411807
9781424411801
EISSN 1063-6919
EndPage 8
ExternalDocumentID 4270197
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i90t-e8d48e5544ca6a2052809944ac40e7bddc5996ac6fae6acae0be858aa0d365833
IEDL.DBID RIE
ISBN 9781424411795
1424411793
ISSN 1063-6919
IngestDate Wed Aug 27 01:48:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-e8d48e5544ca6a2052809944ac40e7bddc5996ac6fae6acae0be858aa0d365833
PageCount 8
ParticipantIDs ieee_primary_4270197
PublicationCentury 2000
PublicationDate 2007-June
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-June
PublicationDecade 2000
PublicationTitle 2007 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000818058
ssj0023720
ssj0003211698
Score 2.3451715
Snippet In this paper, we present a large-scale object retrieval system. The user supplies a query object by selecting a region of a query image, and the system...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Humans
Image retrieval
Information filtering
Information filters
Information retrieval
Large-scale systems
Quantization
Scalability
Silicon
Vocabulary
Title Object retrieval with large vocabularies and fast spatial matching
URI https://ieeexplore.ieee.org/document/4270197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeItD4y4dRLHSVYqqgoJqFBB3So_JQRKUZsy8OvxOXFAiIEp8clDYp11r---Q-hS8diyhFqiNNWEScaJkIISZ7m1yqzlQnmA7D2fPrHbRbrooKu2F8YY48FnZgivvpavV2oLqbIRi4E8PNtBO07N6l6tNp8C1GyhwgfrxEU2vGgrCjFMY_GVT54QXkRFaPICSrQkcD816zTUM2kxGj_PHmumQxfLRUAk_GMKizdCkx66C59fY09eh9tKDtXnL2bH__7fHhp8t_vhWWvI9lHHlAeo1_inuLn9GycKIyCCrI-uHyQkcvDaD-ZyWoshsYvfAF-OP5ydlABzddE4FqXGVmwqvAEMt9voXGWP4xyg-eRmPp6SZiwDeSloRUyuWW6cF8KU4CKmaZw7L5MxoRg1mdRaAeOLUNwK4x7CUGnyNBeC6oRDj9ch6par0hwhHGluIT5k0JKvmMqtdjuZi_myJFWaH6M-HNLyvSbeWDbnc_K3-BTtBjAfjc5Qt1pvzbnzGCp54VXlC87mt3Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKGWAq0CLeeGAkxUkcJ1mpqAq0pUIFdav8lBAoRW3KwNfjm8QBIQamxJYXW7bu65xzEbqQLDA0JMaTiiiPCso8LjjxrOVWMjaGcVkAZMds8ETvZtGsgS5rLozWugCf6S78FrV8tZBrSJVd0QDEw-MNtGntPo1KtladUQFxNlfjg3FoYxuW1jWFAPqxFLVPFnos9VNH8wJRtNCpP1XjyFU0SXrVe548llqHNprzQUr4Rx-Wwgz1W2jkNlCiT16761x05ecvbcf_7nAHdb4Jf3hSm7Jd1NDZHmpVHiqu3v_KTrkmEG6uja4fBKRy8LJozWXvLYbULn4DhDn-sJZSANDVxuOYZwobvsrxClDcdqF1lgskZwdN-zfT3sCrGjN4LynJPZ0ommjrh1DJGQ9IFCTWz6SUS0p0LJSSoPnCJTNc2w_XROgkSjgnKmTA8tpHzWyR6QOEfcUMRIgUSPmSysQou5LaqC8OI6nYIWrDIc3fS-mNeXU-R39Pn6OtwXQ0nA9vx_fHaNtB-4h_gpr5cq1Prf-Qi7Pi2nwBonq6wQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Object+retrieval+with+large+vocabularies+and+fast+spatial+matching&rft.au=Philbin%2C+J.&rft.au=Chum%2C+O.&rft.au=Isard%2C+M.&rft.au=Sivic%2C+J.&rft.date=2007-06-01&rft.pub=IEEE&rft.isbn=9781424411795&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCVPR.2007.383172&rft.externalDocID=4270197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon