Object retrieval with large vocabularies and fast spatial matching
In this paper, we present a large-scale object retrieval system. The user supplies a query object by selecting a region of a query image, and the system returns a ranked list of images that contain the same object, retrieved from a large corpus. We demonstrate the scalability and performance of our...
Saved in:
Published in | 2007 IEEE Conference on Computer Vision and Pattern Recognition pp. 1 - 8 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2007
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424411795 1424411793 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2007.383172 |
Cover
Abstract | In this paper, we present a large-scale object retrieval system. The user supplies a query object by selecting a region of a query image, and the system returns a ranked list of images that contain the same object, retrieved from a large corpus. We demonstrate the scalability and performance of our system on a dataset of over 1 million images crawled from the photo-sharing site, Flickr [3], using Oxford landmarks as queries. Building an image-feature vocabulary is a major time and performance bottleneck, due to the size of our dataset. To address this problem we compare different scalable methods for building a vocabulary and introduce a novel quantization method based on randomized trees which we show outperforms the current state-of-the-art on an extensive ground-truth. Our experiments show that the quantization has a major effect on retrieval quality. To further improve query performance, we add an efficient spatial verification stage to re-rank the results returned from our bag-of-words model and show that this consistently improves search quality, though by less of a margin when the visual vocabulary is large. We view this work as a promising step towards much larger, "web-scale " image corpora. |
---|---|
AbstractList | In this paper, we present a large-scale object retrieval system. The user supplies a query object by selecting a region of a query image, and the system returns a ranked list of images that contain the same object, retrieved from a large corpus. We demonstrate the scalability and performance of our system on a dataset of over 1 million images crawled from the photo-sharing site, Flickr [3], using Oxford landmarks as queries. Building an image-feature vocabulary is a major time and performance bottleneck, due to the size of our dataset. To address this problem we compare different scalable methods for building a vocabulary and introduce a novel quantization method based on randomized trees which we show outperforms the current state-of-the-art on an extensive ground-truth. Our experiments show that the quantization has a major effect on retrieval quality. To further improve query performance, we add an efficient spatial verification stage to re-rank the results returned from our bag-of-words model and show that this consistently improves search quality, though by less of a margin when the visual vocabulary is large. We view this work as a promising step towards much larger, "web-scale " image corpora. |
Author | Chum, O. Zisserman, A. Isard, M. Philbin, J. Sivic, J. |
Author_xml | – sequence: 1 givenname: J. surname: Philbin fullname: Philbin, J. organization: Univ. of Oxford, Oxford – sequence: 2 givenname: O. surname: Chum fullname: Chum, O. organization: Univ. of Oxford, Oxford – sequence: 3 givenname: M. surname: Isard fullname: Isard, M. – sequence: 4 givenname: J. surname: Sivic fullname: Sivic, J. – sequence: 5 givenname: A. surname: Zisserman fullname: Zisserman, A. |
BookMark | eNpNjE9Lw0AUxFetYFtzF7zsF0h9m93N7h411D9QqEjxWl42L-2WNC3JWvHbG7AH5zIDv5mZsFF7aImxOwEzIcA9FJ_vH7MMwMyklcJkF2wiVKaUEBbMJRsLyGWaO-GuWOKMPTPj9Ogfu2FJ3-9gkB1m2o7Z07LckY-8o9gFOmHDv0Pc8ga7DfHTwWP5NeRAPce24jX2kfdHjGEo7jH6bWg3t-y6xqan5OxTtnqer4rXdLF8eSseF2lwEFOylbKktVIec8xAZxacUwq9AjJlVXntXI4-r5EGQ4KSrLaIUMlcWymn7P7vNhDR-tiFPXY_a5UZEM7IX4xaUPs |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2007.383172 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 1424411807 9781424411801 |
EISSN | 1063-6919 |
EndPage | 8 |
ExternalDocumentID | 4270197 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i90t-e8d48e5544ca6a2052809944ac40e7bddc5996ac6fae6acae0be858aa0d365833 |
IEDL.DBID | RIE |
ISBN | 9781424411795 1424411793 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 01:48:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-e8d48e5544ca6a2052809944ac40e7bddc5996ac6fae6acae0be858aa0d365833 |
PageCount | 8 |
ParticipantIDs | ieee_primary_4270197 |
PublicationCentury | 2000 |
PublicationDate | 2007-June |
PublicationDateYYYYMMDD | 2007-06-01 |
PublicationDate_xml | – month: 06 year: 2007 text: 2007-June |
PublicationDecade | 2000 |
PublicationTitle | 2007 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2007 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000818058 ssj0023720 ssj0003211698 |
Score | 2.3451715 |
Snippet | In this paper, we present a large-scale object retrieval system. The user supplies a query object by selecting a region of a query image, and the system... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Humans Image retrieval Information filtering Information filters Information retrieval Large-scale systems Quantization Scalability Silicon Vocabulary |
Title | Object retrieval with large vocabularies and fast spatial matching |
URI | https://ieeexplore.ieee.org/document/4270197 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeItD4y4dRLHSVYqqgoJqFBB3So_JQRKUZsy8OvxOXFAiIEp8clDYp11r---Q-hS8diyhFqiNNWEScaJkIISZ7m1yqzlQnmA7D2fPrHbRbrooKu2F8YY48FnZgivvpavV2oLqbIRi4E8PNtBO07N6l6tNp8C1GyhwgfrxEU2vGgrCjFMY_GVT54QXkRFaPICSrQkcD816zTUM2kxGj_PHmumQxfLRUAk_GMKizdCkx66C59fY09eh9tKDtXnL2bH__7fHhp8t_vhWWvI9lHHlAeo1_inuLn9GycKIyCCrI-uHyQkcvDaD-ZyWoshsYvfAF-OP5ydlABzddE4FqXGVmwqvAEMt9voXGWP4xyg-eRmPp6SZiwDeSloRUyuWW6cF8KU4CKmaZw7L5MxoRg1mdRaAeOLUNwK4x7CUGnyNBeC6oRDj9ch6par0hwhHGluIT5k0JKvmMqtdjuZi_myJFWaH6M-HNLyvSbeWDbnc_K3-BTtBjAfjc5Qt1pvzbnzGCp54VXlC87mt3Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKGWAq0CLeeGAkxUkcJ1mpqAq0pUIFdav8lBAoRW3KwNfjm8QBIQamxJYXW7bu65xzEbqQLDA0JMaTiiiPCso8LjjxrOVWMjaGcVkAZMds8ETvZtGsgS5rLozWugCf6S78FrV8tZBrSJVd0QDEw-MNtGntPo1KtladUQFxNlfjg3FoYxuW1jWFAPqxFLVPFnos9VNH8wJRtNCpP1XjyFU0SXrVe548llqHNprzQUr4Rx-Wwgz1W2jkNlCiT16761x05ecvbcf_7nAHdb4Jf3hSm7Jd1NDZHmpVHiqu3v_KTrkmEG6uja4fBKRy8LJozWXvLYbULn4DhDn-sJZSANDVxuOYZwobvsrxClDcdqF1lgskZwdN-zfT3sCrGjN4LynJPZ0ommjrh1DJGQ9IFCTWz6SUS0p0LJSSoPnCJTNc2w_XROgkSjgnKmTA8tpHzWyR6QOEfcUMRIgUSPmSysQou5LaqC8OI6nYIWrDIc3fS-mNeXU-R39Pn6OtwXQ0nA9vx_fHaNtB-4h_gpr5cq1Prf-Qi7Pi2nwBonq6wQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Object+retrieval+with+large+vocabularies+and+fast+spatial+matching&rft.au=Philbin%2C+J.&rft.au=Chum%2C+O.&rft.au=Isard%2C+M.&rft.au=Sivic%2C+J.&rft.date=2007-06-01&rft.pub=IEEE&rft.isbn=9781424411795&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCVPR.2007.383172&rft.externalDocID=4270197 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |