Scalable and Distributed Sea Port Operational Areas Estimation from AIS Data
Seaports are spatial units that do not remain static over time. They are constantly in flux, evolving according to environmental and connectivity patterns both in size and operational capacity. As such any valid decision making regarding port investment and policy making, essentially needs to take i...
Saved in:
Published in | 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW) pp. 374 - 381 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Seaports are spatial units that do not remain static over time. They are constantly in flux, evolving according to environmental and connectivity patterns both in size and operational capacity. As such any valid decision making regarding port investment and policy making, essentially needs to take into account port evolution over time and space, thus, accurately defining a seaport's exact location, operational boundaries, capacity, connectivity indicators, environmental impact and overall throughput. In this work, we apply a data driven approach to defining a seaport's extended area of operation based on data collected though the Automatic Identification System (AIS). Specifically, we present our adaptation of the well-known KDE algorithm to the MapReduce paradigm, and report results on the port of Rotterdam. |
---|---|
AbstractList | Seaports are spatial units that do not remain static over time. They are constantly in flux, evolving according to environmental and connectivity patterns both in size and operational capacity. As such any valid decision making regarding port investment and policy making, essentially needs to take into account port evolution over time and space, thus, accurately defining a seaport's exact location, operational boundaries, capacity, connectivity indicators, environmental impact and overall throughput. In this work, we apply a data driven approach to defining a seaport's extended area of operation based on data collected though the Automatic Identification System (AIS). Specifically, we present our adaptation of the well-known KDE algorithm to the MapReduce paradigm, and report results on the port of Rotterdam. |
Author | Zissis, Dimitrios Arcieri, Gianfranco Millefiori, Leonardo M. Cazzanti, Luca |
Author_xml | – sequence: 1 givenname: Leonardo M. surname: Millefiori fullname: Millefiori, Leonardo M. organization: NATO STO Centre for Maritime Res. & Experimentation, La Spezia, Italy – sequence: 2 givenname: Dimitrios surname: Zissis fullname: Zissis, Dimitrios email: dzissis@aegean.gr organization: NATO STO Centre for Maritime Res. & Experimentation, La Spezia, Italy – sequence: 3 givenname: Luca surname: Cazzanti fullname: Cazzanti, Luca organization: NATO STO Centre for Maritime Res. & Experimentation, La Spezia, Italy – sequence: 4 givenname: Gianfranco surname: Arcieri fullname: Arcieri, Gianfranco organization: NATO STO Centre for Maritime Res. & Experimentation, La Spezia, Italy |
BookMark | eNotjsFKAzEUAKMo2NaePXjJD2x9SZps3rF0Wy1UKmzBY3ltXmBlu1uy8eDfK-ppYA7DjMVN13csxIOCmVKAT5tl9fo-06DcDMDBlRgrCwgWFdhrMdKmtAVqi3diOgwfAKDQzBH1SGzrE7V0bFlSF2TVDDk1x8_MQdZM8q1PWe4unCg3fUetXCSmQa6G3Jx_lYypP8vFppYVZboXt5Hagaf_nIj9erVfvhTb3fNmudgWDUIu2Gt0seQYbcnzGCFEgmC8P8LpRM5ERALvVQQyQdnIRocQnCqRtaPgzUQ8_mUbZj5c0s9L-jqU3jiHynwD5U1PFQ |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICDMW.2016.0060 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1509059105 9781509059102 |
EISSN | 2375-9259 |
EndPage | 381 |
ExternalDocumentID | 7836691 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i90t-e8296f7eff57e4ff0dfa0d388b0cca63f99a0881f0a3d15fe32ddd6179e26ad83 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:23:54 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-e8296f7eff57e4ff0dfa0d388b0cca63f99a0881f0a3d15fe32ddd6179e26ad83 |
PageCount | 8 |
ParticipantIDs | ieee_primary_7836691 |
PublicationCentury | 2000 |
PublicationDate | 2016-Dec. |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-Dec. |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW) |
PublicationTitleAbbrev | ICDMW |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001934992 |
Score | 1.6834627 |
Snippet | Seaports are spatial units that do not remain static over time. They are constantly in flux, evolving according to environmental and connectivity patterns both... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 374 |
SubjectTerms | AIS Apache Spark Artificial intelligence big data Data mining Decision making Europe KDE MapReduce Marine vehicles port location estimation Ports (Computers) Rotterdam port Sea measurements |
Title | Scalable and Distributed Sea Port Operational Areas Estimation from AIS Data |
URI | https://ieeexplore.ieee.org/document/7836691 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2QkydUMH6nB48udLe73e2R8BEwoiZg5Ea6O9PEmAAhy8Vfb2d3AWM8eGt6aJtO2plO33vD2H0c2Eyl6HtKAXqhdC2TRZEnNATOHYdgSrXPZzV6Cx_n0bzGHvZcGEQswGfYpmbxlw-rbEupsg4xDhRR1Y9irUuu1iGfoqUL3oNKvccXujPu9SfvBN6i7waSoPxRPqXwHsMGm-zmLUEjn-1tnrazr1-SjP9d2AlrHXh6_HXvgU5ZDZdnrLEr1MCrc9tkT1NnCeJIcbME3ietXCpzhcCnaDiBSfnLGjdVXpB3CajOB-7wl7xGThwU3h1Ped_kpsVmw8GsN_KqMgrehxa5h0mglY3R2ijG0FoB1giQSZIKZz0lrdbGXTW-FUaCH1mUAQC4wEZjoAwk8pzVl6slXjBuFSgXTkjjwrpQWdCZG9gNZN2bxWTCXLIm7c1iXQplLKptufq7-5odk3FKbMgNq-ebLd46D5-nd4VpvwEEsqdL |
link.rule.ids | 310,311,783,787,792,793,799,23942,23943,25152,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELYQHdqpD6j6roeODTgvE4-Ih6AFWgmqsiEnd5aqSgGhsPTX95wEqKoO3awMTuSTfV_O3_cdYw8tzyQyRteREtAJfBrpJAwdocCjdByALtw-J3LwFjzNw3mFPe60MIiYk8-wYYf5XT4sk40tlTWt4kBaqfoB4epIFmqtfUVF-QTfvdK_xxWqOex0x--WvmUvHKwJ5Y8GKnn-6B-z8fbNBW3ks7HJ4kby9cuU8b-fdsLqe6Uef93loFNWwfSMHW9bNfBy59bYaEqxsCoprlPgXeuWaxtdIfApam7ppPxlheuyMsjblqrOe7T9C2UjtyoU3h5OeVdnus5m_d6sM3DKRgrOhxKZg5GnpGmhMWELA2MEGC3Aj6JYUPykb5TSdNi4Rmgf3NCg7wEAQRuFntQQ-eesmi5TvGDcSJAEKHxNwC6QBlRCE9NEhv5adCL0JavZtVmsCquMRbksV38_vmeHg9l4tBgNJ8_X7MgGqmCK3LBqtt7gLeX7LL7Lw_wN8jqqlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2016+IEEE+16th+International+Conference+on+Data+Mining+Workshops+%28ICDMW%29&rft.atitle=Scalable+and+Distributed+Sea+Port+Operational+Areas+Estimation+from+AIS+Data&rft.au=Millefiori%2C+Leonardo+M.&rft.au=Zissis%2C+Dimitrios&rft.au=Cazzanti%2C+Luca&rft.au=Arcieri%2C+Gianfranco&rft.date=2016-12-01&rft.pub=IEEE&rft.eissn=2375-9259&rft.spage=374&rft.epage=381&rft_id=info:doi/10.1109%2FICDMW.2016.0060&rft.externalDocID=7836691 |