Scalable and Distributed Sea Port Operational Areas Estimation from AIS Data

Seaports are spatial units that do not remain static over time. They are constantly in flux, evolving according to environmental and connectivity patterns both in size and operational capacity. As such any valid decision making regarding port investment and policy making, essentially needs to take i...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW) pp. 374 - 381
Main Authors Millefiori, Leonardo M., Zissis, Dimitrios, Cazzanti, Luca, Arcieri, Gianfranco
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Seaports are spatial units that do not remain static over time. They are constantly in flux, evolving according to environmental and connectivity patterns both in size and operational capacity. As such any valid decision making regarding port investment and policy making, essentially needs to take into account port evolution over time and space, thus, accurately defining a seaport's exact location, operational boundaries, capacity, connectivity indicators, environmental impact and overall throughput. In this work, we apply a data driven approach to defining a seaport's extended area of operation based on data collected though the Automatic Identification System (AIS). Specifically, we present our adaptation of the well-known KDE algorithm to the MapReduce paradigm, and report results on the port of Rotterdam.
AbstractList Seaports are spatial units that do not remain static over time. They are constantly in flux, evolving according to environmental and connectivity patterns both in size and operational capacity. As such any valid decision making regarding port investment and policy making, essentially needs to take into account port evolution over time and space, thus, accurately defining a seaport's exact location, operational boundaries, capacity, connectivity indicators, environmental impact and overall throughput. In this work, we apply a data driven approach to defining a seaport's extended area of operation based on data collected though the Automatic Identification System (AIS). Specifically, we present our adaptation of the well-known KDE algorithm to the MapReduce paradigm, and report results on the port of Rotterdam.
Author Zissis, Dimitrios
Arcieri, Gianfranco
Millefiori, Leonardo M.
Cazzanti, Luca
Author_xml – sequence: 1
  givenname: Leonardo M.
  surname: Millefiori
  fullname: Millefiori, Leonardo M.
  organization: NATO STO Centre for Maritime Res. & Experimentation, La Spezia, Italy
– sequence: 2
  givenname: Dimitrios
  surname: Zissis
  fullname: Zissis, Dimitrios
  email: dzissis@aegean.gr
  organization: NATO STO Centre for Maritime Res. & Experimentation, La Spezia, Italy
– sequence: 3
  givenname: Luca
  surname: Cazzanti
  fullname: Cazzanti, Luca
  organization: NATO STO Centre for Maritime Res. & Experimentation, La Spezia, Italy
– sequence: 4
  givenname: Gianfranco
  surname: Arcieri
  fullname: Arcieri, Gianfranco
  organization: NATO STO Centre for Maritime Res. & Experimentation, La Spezia, Italy
BookMark eNotjsFKAzEUAKMo2NaePXjJD2x9SZps3rF0Wy1UKmzBY3ltXmBlu1uy8eDfK-ppYA7DjMVN13csxIOCmVKAT5tl9fo-06DcDMDBlRgrCwgWFdhrMdKmtAVqi3diOgwfAKDQzBH1SGzrE7V0bFlSF2TVDDk1x8_MQdZM8q1PWe4unCg3fUetXCSmQa6G3Jx_lYypP8vFppYVZboXt5Hagaf_nIj9erVfvhTb3fNmudgWDUIu2Gt0seQYbcnzGCFEgmC8P8LpRM5ERALvVQQyQdnIRocQnCqRtaPgzUQ8_mUbZj5c0s9L-jqU3jiHynwD5U1PFQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDMW.2016.0060
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1509059105
9781509059102
EISSN 2375-9259
EndPage 381
ExternalDocumentID 7836691
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i90t-e8296f7eff57e4ff0dfa0d388b0cca63f99a0881f0a3d15fe32ddd6179e26ad83
IEDL.DBID RIE
IngestDate Wed Jun 26 19:23:54 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-e8296f7eff57e4ff0dfa0d388b0cca63f99a0881f0a3d15fe32ddd6179e26ad83
PageCount 8
ParticipantIDs ieee_primary_7836691
PublicationCentury 2000
PublicationDate 2016-Dec.
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationTitle 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)
PublicationTitleAbbrev ICDMW
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001934992
Score 1.6834627
Snippet Seaports are spatial units that do not remain static over time. They are constantly in flux, evolving according to environmental and connectivity patterns both...
SourceID ieee
SourceType Publisher
StartPage 374
SubjectTerms AIS
Apache Spark
Artificial intelligence
big data
Data mining
Decision making
Europe
KDE
MapReduce
Marine vehicles
port location estimation
Ports (Computers)
Rotterdam port
Sea measurements
Title Scalable and Distributed Sea Port Operational Areas Estimation from AIS Data
URI https://ieeexplore.ieee.org/document/7836691
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2QkydUMH6nB48udLe73e2R8BEwoiZg5Ea6O9PEmAAhy8Vfb2d3AWM8eGt6aJtO2plO33vD2H0c2Eyl6HtKAXqhdC2TRZEnNATOHYdgSrXPZzV6Cx_n0bzGHvZcGEQswGfYpmbxlw-rbEupsg4xDhRR1Y9irUuu1iGfoqUL3oNKvccXujPu9SfvBN6i7waSoPxRPqXwHsMGm-zmLUEjn-1tnrazr1-SjP9d2AlrHXh6_HXvgU5ZDZdnrLEr1MCrc9tkT1NnCeJIcbME3ietXCpzhcCnaDiBSfnLGjdVXpB3CajOB-7wl7xGThwU3h1Ped_kpsVmw8GsN_KqMgrehxa5h0mglY3R2ijG0FoB1giQSZIKZz0lrdbGXTW-FUaCH1mUAQC4wEZjoAwk8pzVl6slXjBuFSgXTkjjwrpQWdCZG9gNZN2bxWTCXLIm7c1iXQplLKptufq7-5odk3FKbMgNq-ebLd46D5-nd4VpvwEEsqdL
link.rule.ids 310,311,783,787,792,793,799,23942,23943,25152,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELYQHdqpD6j6roeODTgvE4-Ih6AFWgmqsiEnd5aqSgGhsPTX95wEqKoO3awMTuSTfV_O3_cdYw8tzyQyRteREtAJfBrpJAwdocCjdByALtw-J3LwFjzNw3mFPe60MIiYk8-wYYf5XT4sk40tlTWt4kBaqfoB4epIFmqtfUVF-QTfvdK_xxWqOex0x--WvmUvHKwJ5Y8GKnn-6B-z8fbNBW3ks7HJ4kby9cuU8b-fdsLqe6Uef93loFNWwfSMHW9bNfBy59bYaEqxsCoprlPgXeuWaxtdIfApam7ppPxlheuyMsjblqrOe7T9C2UjtyoU3h5OeVdnus5m_d6sM3DKRgrOhxKZg5GnpGmhMWELA2MEGC3Aj6JYUPykb5TSdNi4Rmgf3NCg7wEAQRuFntQQ-eesmi5TvGDcSJAEKHxNwC6QBlRCE9NEhv5adCL0JavZtVmsCquMRbksV38_vmeHg9l4tBgNJ8_X7MgGqmCK3LBqtt7gLeX7LL7Lw_wN8jqqlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2016+IEEE+16th+International+Conference+on+Data+Mining+Workshops+%28ICDMW%29&rft.atitle=Scalable+and+Distributed+Sea+Port+Operational+Areas+Estimation+from+AIS+Data&rft.au=Millefiori%2C+Leonardo+M.&rft.au=Zissis%2C+Dimitrios&rft.au=Cazzanti%2C+Luca&rft.au=Arcieri%2C+Gianfranco&rft.date=2016-12-01&rft.pub=IEEE&rft.eissn=2375-9259&rft.spage=374&rft.epage=381&rft_id=info:doi/10.1109%2FICDMW.2016.0060&rft.externalDocID=7836691