Efficient estimation of accurate maximum likelihood maps in 3D

Learning maps is one of the fundamental tasks of mobile robots. In the past, numerous efficient approaches to map learning have been proposed. Most of them, however, assume that the robot lives on a plane. In this paper, we consider the problem of learning maps with mobile robots that operate in non...

Full description

Saved in:
Bibliographic Details
Published in2007 IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 3472 - 3478
Main Authors Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., Burgard, W.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2007
Subjects
Online AccessGet full text
ISBN9781424409112
142440911X
ISSN2153-0858
DOI10.1109/IROS.2007.4399030

Cover

Loading…
Abstract Learning maps is one of the fundamental tasks of mobile robots. In the past, numerous efficient approaches to map learning have been proposed. Most of them, however, assume that the robot lives on a plane. In this paper, we consider the problem of learning maps with mobile robots that operate in non-flat environments and apply maximum likelihood techniques to solve the graph-based SLAM problem. Due to the non-commutativity of the rotational angles in 3D, major problems arise when applying approaches designed for the two-dimensional world. The non-commutativity introduces serious difficulties when distributing a rotational error over a sequence of poses. In this paper, we present an efficient solution to the SLAM problem that is able to distribute a rotational error over a sequence of nodes. Our approach applies a variant of gradient descent to solve the error minimization problem. We implemented our technique and tested it on large simulated and real world datasets. We furthermore compared our approach to solving the problem by LU-decomposition. As the experiments illustrate, our technique converges significantly faster to an accurate map with low error and is able to correct maps with bigger noise than existing methods.
AbstractList Learning maps is one of the fundamental tasks of mobile robots. In the past, numerous efficient approaches to map learning have been proposed. Most of them, however, assume that the robot lives on a plane. In this paper, we consider the problem of learning maps with mobile robots that operate in non-flat environments and apply maximum likelihood techniques to solve the graph-based SLAM problem. Due to the non-commutativity of the rotational angles in 3D, major problems arise when applying approaches designed for the two-dimensional world. The non-commutativity introduces serious difficulties when distributing a rotational error over a sequence of poses. In this paper, we present an efficient solution to the SLAM problem that is able to distribute a rotational error over a sequence of nodes. Our approach applies a variant of gradient descent to solve the error minimization problem. We implemented our technique and tested it on large simulated and real world datasets. We furthermore compared our approach to solving the problem by LU-decomposition. As the experiments illustrate, our technique converges significantly faster to an accurate map with low error and is able to correct maps with bigger noise than existing methods.
Author Pfaff, P.
Grzonka, S.
Stachniss, C.
Grisetti, G.
Burgard, W.
Author_xml – sequence: 1
  givenname: G.
  surname: Grisetti
  fullname: Grisetti, G.
  organization: Univ. of Freiburg, Freiburg
– sequence: 2
  givenname: S.
  surname: Grzonka
  fullname: Grzonka, S.
  organization: Univ. of Freiburg, Freiburg
– sequence: 3
  givenname: C.
  surname: Stachniss
  fullname: Stachniss, C.
  organization: Univ. of Freiburg, Freiburg
– sequence: 4
  givenname: P.
  surname: Pfaff
  fullname: Pfaff, P.
  organization: Univ. of Freiburg, Freiburg
– sequence: 5
  givenname: W.
  surname: Burgard
  fullname: Burgard, W.
  organization: Univ. of Freiburg, Freiburg
BookMark eNo1UNtKw0AUXLEFm5oPEF_2BxLP2d3s5UWQWrVQKFjfy2azi6u5lCQF_Xsj1qdhZphhmITM2q71hNwg5Ihg7javu33OAFQuuDHA4YIkKJgQYJDpS5Iapf85shlZMCx4BrrQc5L85qSZLHlF0mH4AABUUgCyBblfhxBd9O1I_TDGxo6xa2kXqHXu1NvR08Z-xebU0Dp--jq-d101SceBxpbyx2syD7YefHrGJdk_rd9WL9l297xZPWyzaGDMPBQYmLSVsEqidipYzTCUEqdlWlel5tbywAOrSq65Mkx7J4QqwUsnA1-S27_W6L0_HPtpZv99OD_BfwDl-U6T
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IROS.2007.4399030
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1424409128
9781424409129
EndPage 3478
ExternalDocumentID 4399030
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i90t-e051f26ad4a7618c7fa821fb6100788db83aa3f3f2db3837928ec447b0e6c6f3
IEDL.DBID RIE
ISBN 9781424409112
142440911X
ISSN 2153-0858
IngestDate Wed Aug 27 02:20:50 EDT 2025
IsPeerReviewed false
IsScholarly true
LCCN 2007694096
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-e051f26ad4a7618c7fa821fb6100788db83aa3f3f2db3837928ec447b0e6c6f3
PageCount 7
ParticipantIDs ieee_primary_4399030
PublicationCentury 2000
PublicationDate 2007-Oct.
PublicationDateYYYYMMDD 2007-10-01
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-Oct.
PublicationDecade 2000
PublicationTitle 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
PublicationTitleAbbrev IROS
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001764012
ssj0001079896
Score 2.0453079
Snippet Learning maps is one of the fundamental tasks of mobile robots. In the past, numerous efficient approaches to map learning have been proposed. Most of them,...
SourceID ieee
SourceType Publisher
StartPage 3472
SubjectTerms Error correction
Image converters
Intelligent robots
Maximum likelihood detection
Maximum likelihood estimation
Mobile robots
Simultaneous localization and mapping
Testing
USA Councils
Title Efficient estimation of accurate maximum likelihood maps in 3D
URI https://ieeexplore.ieee.org/document/4399030
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGG-Qk158gPGdHjw6WNetay9eFIImqBFNuJE-kwUYRLfE-NfbdgPUePC2Nlm2td_6PX-_D4BLHUmMiBZBwmQSxIazgCmpApNaYUaGxFXrhOEDGbzG9-Nk3ABXayyM1toXn-mOu_S5fLWQpQuVdZ3tbIVyC2xZx63Cam3iKWHKaE0d58cpsa6DSyJYpYYDa1nQFa7Lqkg0XtE91eOozniikHXvnh9HFblh_cAfnVe84unvguHqlat6k2mnLERHfv5ic_zvN-2B9gbiB5_WymsfNHR-AHa-sRO2wHXP00vY26Gj4qgwjnBhIJeydAwTcM4_snk5h7NsqmeZI0i2U8t3mOUQ37bBqN97uRkEdbuFIGNhEWj7e5qIcBXzlCAqU8NphIwgro6CUiUo5hwbbCIlnFvLIqplHKci1EQSgw9BM1_k-ghAJUSi7dmBuKAxU3Zb7FGWUMGw0CRC8hi03DpMlhWfxqRegpO_p0_Bto-n-gK6M9As3kp9bg2BQlx4CfgCzxCqMQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD-rFDzB-24NHB9u6de3Fi0JAAY1gwo20XZsswCC6Jca_3rYbosaDt7XJ0q5963t97_1-D4Ar6QvkYcmdkIrQCRSjDo1F7KhIC7OncFCUTugPcOcluB-H4wq4_sLCSClt8plsmEcby48XIjeusqaxnbVQboDN0IBxC7TW2qPiRpSU5HG2HWF9eTBhBK3WkKNtC7JCdmkl6Y1XhE9l2y9jnp5Lm93nx2FBb1gO-aP2ilU97V3QX026yDiZNvKMN8THLz7H_37VHqivQX7w6Ut97YOKTA_Azjd-whq4aVmCCf06NGQcBcoRLhRkQuSGYwLO2Xsyz-dwlkzlLDEUybpr-QaTFKK7Ohi2W6PbjlMWXHAS6maO1D-o8jGLAxZhj4hIMeJ7imOTSUFIzAliDCmk_Jibiy31iRRBEHFXYoEVOgTVdJHKIwBjzkOpTw-PcRLQWG-LPsxCwiniEvueOAY1sw6TZcGoMSmX4OTv7kuw1Rn1e5Ned_BwCratd9Wm052Bavaay3NtFmT8wkrDJ-gsrXk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=Efficient+estimation+of+accurate+maximum+likelihood+maps+in+3D&rft.au=Grisetti%2C+G.&rft.au=Grzonka%2C+S.&rft.au=Stachniss%2C+C.&rft.au=Pfaff%2C+P.&rft.date=2007-10-01&rft.pub=IEEE&rft.isbn=9781424409112&rft.issn=2153-0858&rft.spage=3472&rft.epage=3478&rft_id=info:doi/10.1109%2FIROS.2007.4399030&rft.externalDocID=4399030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-0858&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-0858&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-0858&client=summon