Improving fault localization for Simulink models using search-based testing and prediction models

One promising way to improve the accuracy of fault localization based on statistical debugging is to increase diversity among test cases in the underlying test suite. In many practical situations, adding test cases is not a cost-free option because test oracles are developed manually or running test...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER) pp. 359 - 370
Main Authors Bing Liu, Lucia, Nejati, Shiva, Briand, Lionel C.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.02.2017
Subjects
Online AccessGet full text
DOI10.1109/SANER.2017.7884636

Cover

Loading…
Abstract One promising way to improve the accuracy of fault localization based on statistical debugging is to increase diversity among test cases in the underlying test suite. In many practical situations, adding test cases is not a cost-free option because test oracles are developed manually or running test cases is expensive. Hence, we require to have test suites that are both diverse and small to improve debugging. In this paper, we focus on improving fault localization of Simulink models by generating test cases. We identify three test objectives that aim to increase test suite diversity. We use these objectives in a search-based algorithm to generate diversified but small test suites. To further minimize test suite sizes, we develop a prediction model to stop test generation when adding test cases is unlikely to improve fault localization. We evaluate our approach using three industrial subjects. Our results show (1) the three selected test objectives are able to significantly improve the accuracy of fault localization for small test suite sizes, and (2) our prediction model is able to maintain almost the same fault localization accuracy while reducing the average number of newly generated test cases by more than half.
AbstractList One promising way to improve the accuracy of fault localization based on statistical debugging is to increase diversity among test cases in the underlying test suite. In many practical situations, adding test cases is not a cost-free option because test oracles are developed manually or running test cases is expensive. Hence, we require to have test suites that are both diverse and small to improve debugging. In this paper, we focus on improving fault localization of Simulink models by generating test cases. We identify three test objectives that aim to increase test suite diversity. We use these objectives in a search-based algorithm to generate diversified but small test suites. To further minimize test suite sizes, we develop a prediction model to stop test generation when adding test cases is unlikely to improve fault localization. We evaluate our approach using three industrial subjects. Our results show (1) the three selected test objectives are able to significantly improve the accuracy of fault localization for small test suite sizes, and (2) our prediction model is able to maintain almost the same fault localization accuracy while reducing the average number of newly generated test cases by more than half.
Author Briand, Lionel C.
Bing Liu
Nejati, Shiva
Lucia
Author_xml – sequence: 1
  surname: Bing Liu
  fullname: Bing Liu
  email: bing.liu@uni.lu
  organization: SnT Centre, Univ. of Luxembourg, Luxembourg City, Luxembourg
– sequence: 2
  surname: Lucia
  fullname: Lucia
  email: lucia.lucia@uni.lu
  organization: SnT Centre, Univ. of Luxembourg, Luxembourg City, Luxembourg
– sequence: 3
  givenname: Shiva
  surname: Nejati
  fullname: Nejati, Shiva
  email: shiva.nejati@uni.lu
  organization: SnT Centre, Univ. of Luxembourg, Luxembourg City, Luxembourg
– sequence: 4
  givenname: Lionel C.
  surname: Briand
  fullname: Briand, Lionel C.
  email: lionel.briand@uni.lu
  organization: SnT Centre, Univ. of Luxembourg, Luxembourg City, Luxembourg
BookMark eNotj91KAzEUhCPoha2-gN7kBXY9Sfb3spSqhaJge1_OJicazG5Ksivo02ttr2YY5huYGbscwkCM3QnIhYD2Ybt4Wb3lEkSd101TVKq6YDNRQgtlCQKuGa77QwxfbnjnFic_ch80eveDowsDtyHyresn74ZP3gdDPvEpHcuJMOqPrMNEho-UxmOIg-GHSMbpf_oE3LAriz7R7VnnbPe42i2fs83r03q52GSuhTEz1mqpjCxKIIGyEh1UGv8sSNUJi1B00lTaNNQUElRNhQEpRItWN7WUWs3Z_WnWEdH-EF2P8Xt_Pq1-AaK1U2E
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SANER.2017.7884636
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509055010
9781509055012
EndPage 370
ExternalDocumentID 7884636
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-dffc23d2450e1a261b06cae1a023b1fa04b2d6cd8e842037e4d02119afc8722c3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:54 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-dffc23d2450e1a261b06cae1a023b1fa04b2d6cd8e842037e4d02119afc8722c3
PageCount 12
ParticipantIDs ieee_primary_7884636
PublicationCentury 2000
PublicationDate 2017-Feb.
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-Feb.
PublicationDecade 2010
PublicationTitle 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)
PublicationTitleAbbrev SANER
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.829848
Snippet One promising way to improve the accuracy of fault localization based on statistical debugging is to increase diversity among test cases in the underlying test...
SourceID ieee
SourceType Publisher
StartPage 359
SubjectTerms Adaptation models
Computational modeling
Debugging
Fault localization
Predictive models
Ranking (statistics)
search-based testing
Simulink models
Software packages
supervised learning
test suite diversity
Testing
Title Improving fault localization for Simulink models using search-based testing and prediction models
URI https://ieeexplore.ieee.org/document/7884636
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3lS2cTf5ODRdlmatulRZGMIG-Im7DaSvETGpBuzvfjXm7TdRPHg7ZE2tOS1fPnxfd8DuEMulBJMB1a7v4lblIGwxkXuAtOYRjbzQuHJNBm_8qdFvGjB_UELY4ypyGcm9GF1lo8bXfqtsr5brnl_qza0XVRrtfY6GJr1Zw_T4Ysna6Vhc-OPiikVYIyOYbJ_VM0TWYdloUL9-cuF8b_vcgK9b2keeT6Azim0TN4FedgaIFaW7wWpEKpRWBI3LSWzladB5WtSVb75IJ7u_kbqzzzwSIak8H4brlHmSLY7f35T9a479GA-Gs4fx0FTOyFYZbQI0FrNImQ8pmYg3SpJ0URLFzqIVgMrKVcME43CCM5olBqO1Hu9SatFypiOzqCTb3JzDgQtF4YlaaZj5ImOlXYzkIFKXUYlqpheQNePznJbu2Msm4G5_Lv5Co58hmre8zV0il1pbhysF-q2yucXWB6odQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFL1BXOhKDRjfzsKlLdPptJ0ujYGgAjGCCTsyT0MwhWC78eudaQtG48LdzbSTNnPbnHmccy7AjaJMCEakZ6T9m6hR3GNG28heIFIloUmdUHg4ivuv9HEaTRtwu9XCaK1L8pn2XVie5aulLNxWWccu15y_1Q7sWtyPgkqttVHC4LQzvht1XxxdK_HrW3_UTCkho3cAw83DKqbIwi9y4cvPXz6M_32bQ2h_i_PQ8xZ2jqChsxbw7eYAMrx4z1GJUbXGEtmJKRrPHREqW6Cy9s0HcoT3N1R96J7DMoVy57hhG3mm0GrtTnDK3lWHNkx63cl936urJ3jzFOeeMkaSUBEaYR1wu04SOJbchhakRWA4poKoWCqmGSU4TDRV2Lm9cSNZQogMj6GZLTN9AkgZyjSJk1RGisYyEtLOQQKR2JxyJSJ8Ci03OrNV5Y8xqwfm7O_ma9jrT4aD2eBh9HQO-y5bFQv6Apr5utCXFuRzcVXm9gtNfau-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+24th+International+Conference+on+Software+Analysis%2C+Evolution+and+Reengineering+%28SANER%29&rft.atitle=Improving+fault+localization+for+Simulink+models+using+search-based+testing+and+prediction+models&rft.au=Bing+Liu&rft.au=Lucia&rft.au=Nejati%2C+Shiva&rft.au=Briand%2C+Lionel+C.&rft.date=2017-02-01&rft.pub=IEEE&rft.spage=359&rft.epage=370&rft_id=info:doi/10.1109%2FSANER.2017.7884636&rft.externalDocID=7884636