Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition
We present an unsupervised method for learning a hierarchy of sparse feature detectors that are invariant to small shifts and distortions. The resulting feature extractor consists of multiple convolution filters, followed by a feature-pooling layer that computes the max of each filter output within...
Saved in:
Published in | 2007 IEEE Conference on Computer Vision and Pattern Recognition pp. 1 - 8 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2007
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424411795 1424411793 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2007.383157 |
Cover
Loading…
Abstract | We present an unsupervised method for learning a hierarchy of sparse feature detectors that are invariant to small shifts and distortions. The resulting feature extractor consists of multiple convolution filters, followed by a feature-pooling layer that computes the max of each filter output within adjacent windows, and a point-wise sigmoid non-linearity. A second level of larger and more invariant features is obtained by training the same algorithm on patches of features from the first level. Training a supervised classifier on these features yields 0.64% error on MNIST, and 54% average recognition rate on Caltech 101 with 30 training samples per category. While the resulting architecture is similar to convolutional networks, the layer-wise unsupervised training procedure alleviates the over-parameterization problems that plague purely supervised learning procedures, and yields good performance with very few labeled training samples. |
---|---|
AbstractList | We present an unsupervised method for learning a hierarchy of sparse feature detectors that are invariant to small shifts and distortions. The resulting feature extractor consists of multiple convolution filters, followed by a feature-pooling layer that computes the max of each filter output within adjacent windows, and a point-wise sigmoid non-linearity. A second level of larger and more invariant features is obtained by training the same algorithm on patches of features from the first level. Training a supervised classifier on these features yields 0.64% error on MNIST, and 54% average recognition rate on Caltech 101 with 30 training samples per category. While the resulting architecture is similar to convolutional networks, the layer-wise unsupervised training procedure alleviates the over-parameterization problems that plague purely supervised learning procedures, and yields good performance with very few labeled training samples. |
Author | Ranzato, M.A. Fu Jie Huang Yann LeCun Boureau, Y.-L. |
Author_xml | – sequence: 1 givenname: M.A. surname: Ranzato fullname: Ranzato, M.A. organization: New York Univ., New York – sequence: 2 surname: Fu Jie Huang fullname: Fu Jie Huang organization: New York Univ., New York – sequence: 3 givenname: Y.-L. surname: Boureau fullname: Boureau, Y.-L. organization: New York Univ., New York – sequence: 4 surname: Yann LeCun fullname: Yann LeCun organization: New York Univ., New York |
BookMark | eNpNjE1PAjEYhKtiIiB3Ey_9A4v93u6REBESEgxBj5Ju9y2UYHfTLhj_vWvk4FxmMk9mBqgX6gAIPVAyppQUT9P31_WYEZKPueZU5ldoQAUTglJN8mvUp0TxTBW0uEGjItcXlhey94_doVFKB9JJdzOp--jjLaRTA_HsE1R4CSYGH3a4dngRziZ6E1o8A9OeIuC5h2ii3XtI-Mu3ezxpmqO3pvV1SLit8ao8gG3xGmy9C_63vke3zhwTjC4-RJvZ82Y6z5arl8V0ssx8QdqscsTJ0hXclNQKJ7higlvJKqZ45Qw4UZZV5QRx1gkJSgOjUlWOEqa6aPgQPf7degDYNtF_mvi9FSwnVDP-A8QLXBc |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2007.383157 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 1424411807 9781424411801 |
EISSN | 1063-6919 |
EndPage | 8 |
ExternalDocumentID | 4270182 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i90t-df0f5bf93ab1c4f436243c52d263dfaef4bbddf40fcf45e68e2156df1026e21a3 |
IEDL.DBID | RIE |
ISBN | 9781424411795 1424411793 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 01:48:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-df0f5bf93ab1c4f436243c52d263dfaef4bbddf40fcf45e68e2156df1026e21a3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_4270182 |
PublicationCentury | 2000 |
PublicationDate | 2007-June |
PublicationDateYYYYMMDD | 2007-06-01 |
PublicationDate_xml | – month: 06 year: 2007 text: 2007-June |
PublicationDecade | 2000 |
PublicationTitle | 2007 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2007 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000818058 ssj0023720 ssj0003211698 |
Score | 2.3040402 |
Snippet | We present an unsupervised method for learning a hierarchy of sparse feature detectors that are invariant to small shifts and distortions. The resulting... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Computer architecture Computer vision Convolution Detectors Feature extraction Gabor filters Object detection Object recognition Supervised learning Unsupervised learning |
Title | Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition |
URI | https://ieeexplore.ieee.org/document/4270182 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6AkydUMH6nB48O9tEWejREgiYoIWA4Sba1rxKTjcDmwV_v223Fj3jw1jY9bG23Pu_H87yEXLnAQQLnjpYhGiix6zpSeOCo0BAxNUKQQqx6_CBGc3a_4Isaud5xYbTWRfKZ7phmEctXaZwbV1mX-T0X8XCd1PGYlVytnT_FSLPZCJ_pB2jZCLmLKPimGksR-RSBI6QnLcnLSKIFVvup6nMbz3Rld_A0mZZKh2jLefxnFZbiEho2ydg-fpl78tbJs6gTf_xSdvzv--2T9hfdj052F9kBqenkkDQrfEqrr3-LQ7YEhB1rked5ss3X5n-zxamVWOsLTYHeJe9ohuO-UYMy842mo5UhO8evaJtT4_6lN9-C5zRL6WNknEJ0anOa0qRNZsPb2WDkVCUbnJV0M0cB7n0EMggjL2bA8HZkQcx95YtAQaiBRZFSwFyIgXEt-hoRh1CAKEdgMwyOSCNJE31MKFO-UjELgIXAehxCnGfILLwvCxW0E9IyC7hcl6Icy2rtTv8ePiN7NtHP9c5JI9vk-gLRRBZdFsfoE9WWwcY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLagDDBxixsPjKTNYbv1iCqqcBSqqqBOVEnsBxVSgtqEgV_PcxKXQwxstuXFzvG-d3zfI-TMBQ4SOHe0jNBBSVzXkcIDR0WGiKkRgpRi1f07ET6w6zEfL5HzBRdGa10Wn-mmGZa5fJUlhQmVtZjfdhEPL5MVtPuMV2ytRUTFiLPZHJ-ZB-jbCLnIKfimH0uZ-xSBI6QnLc3LiKIFVv2pnnOb0XRlq_s4GFZah-jNefxnH5bSDPXWSd8eoKo-eW0WedxMPn5pO_73hBtk54vwRwcLU7ZJlnS6RdZrhErr73-OS7YJhF3bJk8P6bx4M3-cOW6t5VqfaQb0Kn1HRxyfHDU4s5hpGk4N3Tl5Qe-cmgAwvfiWPqd5Ru9jExaiQ1vVlKU7ZNS7HHVDp27a4EylmzsK8OnHIIMo9hIGDO0jCxLuK18ECiINLI6VAuZCAoxr0dGIOYQCxDkCh1GwSxppluo9QpnylUpYACwC1uYQ4T5DZ-EdWeqg7ZNtc4GTt0qWY1Lf3cHfy6dkNRz1bye3V3c3h2TNlv253hFp5LNCHyO2yOOT8pX6BC2pxRM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Unsupervised+Learning+of+Invariant+Feature+Hierarchies+with+Applications+to+Object+Recognition&rft.au=Ranzato%2C+M.A.&rft.au=Fu+Jie+Huang&rft.au=Boureau%2C+Y.-L.&rft.au=Yann+LeCun&rft.date=2007-06-01&rft.pub=IEEE&rft.isbn=9781424411795&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCVPR.2007.383157&rft.externalDocID=4270182 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |