Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition

We present an unsupervised method for learning a hierarchy of sparse feature detectors that are invariant to small shifts and distortions. The resulting feature extractor consists of multiple convolution filters, followed by a feature-pooling layer that computes the max of each filter output within...

Full description

Saved in:
Bibliographic Details
Published in2007 IEEE Conference on Computer Vision and Pattern Recognition pp. 1 - 8
Main Authors Ranzato, M.A., Fu Jie Huang, Boureau, Y.-L., Yann LeCun
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2007
Subjects
Online AccessGet full text
ISBN9781424411795
1424411793
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2007.383157

Cover

Loading…
Abstract We present an unsupervised method for learning a hierarchy of sparse feature detectors that are invariant to small shifts and distortions. The resulting feature extractor consists of multiple convolution filters, followed by a feature-pooling layer that computes the max of each filter output within adjacent windows, and a point-wise sigmoid non-linearity. A second level of larger and more invariant features is obtained by training the same algorithm on patches of features from the first level. Training a supervised classifier on these features yields 0.64% error on MNIST, and 54% average recognition rate on Caltech 101 with 30 training samples per category. While the resulting architecture is similar to convolutional networks, the layer-wise unsupervised training procedure alleviates the over-parameterization problems that plague purely supervised learning procedures, and yields good performance with very few labeled training samples.
AbstractList We present an unsupervised method for learning a hierarchy of sparse feature detectors that are invariant to small shifts and distortions. The resulting feature extractor consists of multiple convolution filters, followed by a feature-pooling layer that computes the max of each filter output within adjacent windows, and a point-wise sigmoid non-linearity. A second level of larger and more invariant features is obtained by training the same algorithm on patches of features from the first level. Training a supervised classifier on these features yields 0.64% error on MNIST, and 54% average recognition rate on Caltech 101 with 30 training samples per category. While the resulting architecture is similar to convolutional networks, the layer-wise unsupervised training procedure alleviates the over-parameterization problems that plague purely supervised learning procedures, and yields good performance with very few labeled training samples.
Author Ranzato, M.A.
Fu Jie Huang
Yann LeCun
Boureau, Y.-L.
Author_xml – sequence: 1
  givenname: M.A.
  surname: Ranzato
  fullname: Ranzato, M.A.
  organization: New York Univ., New York
– sequence: 2
  surname: Fu Jie Huang
  fullname: Fu Jie Huang
  organization: New York Univ., New York
– sequence: 3
  givenname: Y.-L.
  surname: Boureau
  fullname: Boureau, Y.-L.
  organization: New York Univ., New York
– sequence: 4
  surname: Yann LeCun
  fullname: Yann LeCun
  organization: New York Univ., New York
BookMark eNpNjE1PAjEYhKtiIiB3Ey_9A4v93u6REBESEgxBj5Ju9y2UYHfTLhj_vWvk4FxmMk9mBqgX6gAIPVAyppQUT9P31_WYEZKPueZU5ldoQAUTglJN8mvUp0TxTBW0uEGjItcXlhey94_doVFKB9JJdzOp--jjLaRTA_HsE1R4CSYGH3a4dngRziZ6E1o8A9OeIuC5h2ii3XtI-Mu3ezxpmqO3pvV1SLit8ao8gG3xGmy9C_63vke3zhwTjC4-RJvZ82Y6z5arl8V0ssx8QdqscsTJ0hXclNQKJ7higlvJKqZ45Qw4UZZV5QRx1gkJSgOjUlWOEqa6aPgQPf7degDYNtF_mvi9FSwnVDP-A8QLXBc
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2007.383157
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1424411807
9781424411801
EISSN 1063-6919
EndPage 8
ExternalDocumentID 4270182
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i90t-df0f5bf93ab1c4f436243c52d263dfaef4bbddf40fcf45e68e2156df1026e21a3
IEDL.DBID RIE
ISBN 9781424411795
1424411793
ISSN 1063-6919
IngestDate Wed Aug 27 01:48:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-df0f5bf93ab1c4f436243c52d263dfaef4bbddf40fcf45e68e2156df1026e21a3
PageCount 8
ParticipantIDs ieee_primary_4270182
PublicationCentury 2000
PublicationDate 2007-June
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-June
PublicationDecade 2000
PublicationTitle 2007 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000818058
ssj0023720
ssj0003211698
Score 2.3040402
Snippet We present an unsupervised method for learning a hierarchy of sparse feature detectors that are invariant to small shifts and distortions. The resulting...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computer architecture
Computer vision
Convolution
Detectors
Feature extraction
Gabor filters
Object detection
Object recognition
Supervised learning
Unsupervised learning
Title Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition
URI https://ieeexplore.ieee.org/document/4270182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6AkydUMH6nB48O9tEWejREgiYoIWA4Sba1rxKTjcDmwV_v223Fj3jw1jY9bG23Pu_H87yEXLnAQQLnjpYhGiix6zpSeOCo0BAxNUKQQqx6_CBGc3a_4Isaud5xYbTWRfKZ7phmEctXaZwbV1mX-T0X8XCd1PGYlVytnT_FSLPZCJ_pB2jZCLmLKPimGksR-RSBI6QnLcnLSKIFVvup6nMbz3Rld_A0mZZKh2jLefxnFZbiEho2ydg-fpl78tbJs6gTf_xSdvzv--2T9hfdj052F9kBqenkkDQrfEqrr3-LQ7YEhB1rked5ss3X5n-zxamVWOsLTYHeJe9ohuO-UYMy842mo5UhO8evaJtT4_6lN9-C5zRL6WNknEJ0anOa0qRNZsPb2WDkVCUbnJV0M0cB7n0EMggjL2bA8HZkQcx95YtAQaiBRZFSwFyIgXEt-hoRh1CAKEdgMwyOSCNJE31MKFO-UjELgIXAehxCnGfILLwvCxW0E9IyC7hcl6Icy2rtTv8ePiN7NtHP9c5JI9vk-gLRRBZdFsfoE9WWwcY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLagDDBxixsPjKTNYbv1iCqqcBSqqqBOVEnsBxVSgtqEgV_PcxKXQwxstuXFzvG-d3zfI-TMBQ4SOHe0jNBBSVzXkcIDR0WGiKkRgpRi1f07ET6w6zEfL5HzBRdGa10Wn-mmGZa5fJUlhQmVtZjfdhEPL5MVtPuMV2ytRUTFiLPZHJ-ZB-jbCLnIKfimH0uZ-xSBI6QnLc3LiKIFVv2pnnOb0XRlq_s4GFZah-jNefxnH5bSDPXWSd8eoKo-eW0WedxMPn5pO_73hBtk54vwRwcLU7ZJlnS6RdZrhErr73-OS7YJhF3bJk8P6bx4M3-cOW6t5VqfaQb0Kn1HRxyfHDU4s5hpGk4N3Tl5Qe-cmgAwvfiWPqd5Ru9jExaiQ1vVlKU7ZNS7HHVDp27a4EylmzsK8OnHIIMo9hIGDO0jCxLuK18ECiINLI6VAuZCAoxr0dGIOYQCxDkCh1GwSxppluo9QpnylUpYACwC1uYQ4T5DZ-EdWeqg7ZNtc4GTt0qWY1Lf3cHfy6dkNRz1bye3V3c3h2TNlv253hFp5LNCHyO2yOOT8pX6BC2pxRM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Unsupervised+Learning+of+Invariant+Feature+Hierarchies+with+Applications+to+Object+Recognition&rft.au=Ranzato%2C+M.A.&rft.au=Fu+Jie+Huang&rft.au=Boureau%2C+Y.-L.&rft.au=Yann+LeCun&rft.date=2007-06-01&rft.pub=IEEE&rft.isbn=9781424411795&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCVPR.2007.383157&rft.externalDocID=4270182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon