Bioinformatics data mining using artificial immune systems and neural networks
Bioinformatics is a data-intensive field of research and development. The purpose of bioinformatics data mining is to discover the relationships and patterns in large databases to provide useful information for biomedical analysis and diagnosis. In this research, algorithms based on artificial immun...
Saved in:
Published in | 2010 International Conference on Information and Automation pp. 440 - 445 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2010
|
Subjects | |
Online Access | Get full text |
ISBN | 1424457017 9781424457014 |
DOI | 10.1109/ICINFA.2010.5512376 |
Cover
Abstract | Bioinformatics is a data-intensive field of research and development. The purpose of bioinformatics data mining is to discover the relationships and patterns in large databases to provide useful information for biomedical analysis and diagnosis. In this research, algorithms based on artificial immune systems (AIS) and artificial neural networks (ANN) are employed for bioinformatics data mining. Three different variations of the real-valued negative selection algorithm and a multi-layer feedforward neural network model are discussed, tested and compared via computer simulations. It is shown that the ANN model yields the best overall result while the AIS algorithm is advantageous when only the "normal" (or "self") data is available. |
---|---|
AbstractList | Bioinformatics is a data-intensive field of research and development. The purpose of bioinformatics data mining is to discover the relationships and patterns in large databases to provide useful information for biomedical analysis and diagnosis. In this research, algorithms based on artificial immune systems (AIS) and artificial neural networks (ANN) are employed for bioinformatics data mining. Three different variations of the real-valued negative selection algorithm and a multi-layer feedforward neural network model are discussed, tested and compared via computer simulations. It is shown that the ANN model yields the best overall result while the AIS algorithm is advantageous when only the "normal" (or "self") data is available. |
Author | Xiao-Hua Yu Shane Dixon |
Author_xml | – sequence: 1 surname: Shane Dixon fullname: Shane Dixon organization: Dept. of Electr. Eng., California Polytech. State Univ., San Luis Obispo, CA, USA – sequence: 2 surname: Xiao-Hua Yu fullname: Xiao-Hua Yu organization: Dept. of Electr. Eng., California Polytech. State Univ., San Luis Obispo, CA, USA |
BookMark | eNo1UEFOwzAQNIJKkJIX9OIPpKwdO46PJaIQqSqX3ivH3iBD46A4EervSUXZw4x2RzMabULuQh-QkBWDNWOgn-qq3m83aw7zQUrGc1XckFSrkgkuhFQg5C1J_hemFiThAFoLAC7uSRrjJ8wjJOdQPJD9s-99aPuhM6O3kTozGtr54MMHneIFzTD61ltvTtR33RSQxnMcsYvUBEcDTsOsBBx_-uErPpJFa04R0ysvyWH7cqjest37a11tdpnXMGbOzq0dVyUapVXDW-tkI1VeWssaDg5bARLywhnUhc3LEmXpgDegG3Mx5kuy-ov1iHj8HnxnhvPx-o78FxfeVMw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICINFA.2010.5512376 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781424457045 1424457041 9781424457021 1424457025 |
EndPage | 445 |
ExternalDocumentID | 5512376 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-dc376d278ea797b2fcd5b5738cc1b20def405036dae96c388e58d02b09ba76d23 |
IEDL.DBID | RIE |
ISBN | 1424457017 9781424457014 |
IngestDate | Wed Aug 27 02:44:33 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2009940024 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-dc376d278ea797b2fcd5b5738cc1b20def405036dae96c388e58d02b09ba76d23 |
PageCount | 6 |
ParticipantIDs | ieee_primary_5512376 |
PublicationCentury | 2000 |
PublicationDate | 2010-June |
PublicationDateYYYYMMDD | 2010-06-01 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-June |
PublicationDecade | 2010 |
PublicationTitle | 2010 International Conference on Information and Automation |
PublicationTitleAbbrev | ICINFA |
PublicationYear | 2010 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000452206 |
Score | 1.4605477 |
Snippet | Bioinformatics is a data-intensive field of research and development. The purpose of bioinformatics data mining is to discover the relationships and patterns... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 440 |
SubjectTerms | Artificial immune systems Artificial neural networks Bioinformatics Data mining Information analysis Multi-layer neural network Neural networks Pattern analysis Real-valued negative selection algorithm Research and development |
Title | Bioinformatics data mining using artificial immune systems and neural networks |
URI | https://ieeexplore.ieee.org/document/5512376 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LSwMxEMaH1pNefLTimxw8um26r2yOWiyt0OKhQm8lj1kp4lbs9uJfb2azrQ88eNsHWYZkYJbJ9_0CcO2W1SRa6kCp1AaxViZQJrdBZGxKXs08Q_I7jyfp8Cl-mCWzBtxsvTCIWInPsEOX1V6-XZo1tcq6rrqTiKMJTZdm3qu17adUaHCebrxbiXCptkE61fdxTR3qcdkd9UeTwa2XdtWf_XG-SlVeBvsw3gTmVSUvnXWpO-bjF7Pxv5EfQPvLyMcetyXqEBpYHMHeNwZhCyZ3i2VNTyViMyPJKHutjo1gJIp_ZpRcnjPBFuQmQebxzyumCssIiOneFF5OvmrDdHA_7Q-D-pCFYCF5GVjjwrKhyFAJKXSYG5voRESZMT0dcot5TMSY1CqUqYmyDJPM8lBzqRUNjI5hp1gWeAKMS4HEg0_yPHW_BVIqydENE1b10OT6FFo0MfM3j9GY13Ny9vfjc9j1G_XU8LiAnfJ9jZeu_pf6qlr4Tyb8rj4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ27T8MwEMZPpQzAwqNFvPHASFo3iZN4hIqqhTZiKFK3yq-gCpEimi789fjitDzEwJaHHJ2ck846f9_PAFf2tyomufSEiLQXSqE8oTLtBUpH6NXMEoN-51Ea9Z_C-wmb1OB67YUxxpTiM9PCy3IvX8_VEltlbVvdUcSxAZu27ofMubXWHZUSDk6jlXuLxTbZVlCn6j6suEMdytuD7iDt3ThxV_XhHyeslAWmtwujVWhOV_LSWhaypT5-URv_G_seNL-sfORxXaT2oWbyA9j5RiFsQHo7m1f8VGQ2ExSNktfy4AiCsvhngunlSBNkhn4SQxwAekFErgkiMe2b3AnKF00Y9-7G3b5XHbPgzTgtPK1sWNqPEyNiHks_U5pJFgeJUh3pU22yEJkxkRaGRypIEsMSTX1JuRQ4MDiEej7PzREQymODRHiWZZFdGHAuODV2WKxFx6hMHkMDJ2b65kAa02pOTv5-fAlb_fFoOB0O0odT2Hbb9tj-OIN68b4053Y1UMiLMgk-AXmbsYs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+Information+and+Automation&rft.atitle=Bioinformatics+data+mining+using+artificial+immune+systems+and+neural+networks&rft.au=Shane+Dixon&rft.au=Xiao-Hua+Yu&rft.date=2010-06-01&rft.pub=IEEE&rft.isbn=9781424457014&rft.spage=440&rft.epage=445&rft_id=info:doi/10.1109%2FICINFA.2010.5512376&rft.externalDocID=5512376 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424457014/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424457014/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424457014/sc.gif&client=summon&freeimage=true |